
Package: seqHMM (via r-universe)
September 1, 2024

Title Mixture Hidden Markov Models for Social Sequence Data and Other
Multivariate, Multichannel Categorical Time Series

Version 1.2.6

Date 2023-06-7

Description Designed for fitting hidden (latent) Markov models and
mixture hidden Markov models for social sequence data and other
categorical time series. Also some more restricted versions of
these type of models are available: Markov models, mixture
Markov models, and latent class models. The package supports
models for one or multiple subjects with one or multiple
parallel sequences (channels). External covariates can be added
to explain cluster membership in mixture models. The package
provides functions for evaluating and comparing models, as well
as functions for visualizing of multichannel sequence data and
hidden Markov models. Models are estimated using maximum
likelihood via the EM algorithm and/or direct numerical
maximization with analytical gradients. All main algorithms are
written in C++ with support for parallel computation.
Documentation is available via several vignettes in this page,
and the paper by Helske and Helske (2019,
<doi:10.18637/jss.v088.i03>).

LazyData true

LinkingTo Rcpp, RcppArmadillo

Depends R (>= 3.5.0)

Imports gridBase, igraph, Matrix, nloptr, numDeriv, Rcpp (>= 0.11.3),
TraMineR (>= 1.8-8), graphics, grDevices, grid, methods, stats,
utils

Suggests MASS, nnet, knitr, testthat (>= 3.0.0), covr

License GPL (>= 2)

Encoding UTF-8

BugReports https://github.com/helske/seqHMM/issues

VignetteBuilder knitr

1

https://doi.org/10.18637/jss.v088.i03
https://github.com/helske/seqHMM/issues

2 Contents

RoxygenNote 7.2.3

Config/testthat/edition 3

Repository https://helske.r-universe.dev

RemoteUrl https://github.com/helske/seqHMM

RemoteRef HEAD

RemoteSha 2a50b04b01ec0c87c6ec6a2cd7c7b4aa3fc3c202

Contents
biofam3c . 3
build_hmm . 5
build_lcm . 9
build_mhmm . 12
build_mm . 18
build_mmm . 20
cluster_names . 22
cluster_names<- . 23
colorpalette . 23
estimate_coef . 24
fit_model . 24
forward_backward . 36
gridplot . 37
hidden_paths . 40
hmm_biofam . 41
hmm_mvad . 43
logLik.hmm . 44
logLik.mhmm . 45
mc_to_sc . 46
mc_to_sc_data . 47
mhmm_biofam . 49
mhmm_mvad . 52
mssplot . 54
plot.hmm . 58
plot.mhmm . 63
plot.ssp . 67
plot_colors . 68
posterior_probs . 69
print.hmm . 70
separate_mhmm . 71
seqdef . 71
seqHMM . 72
seqHMM-deprecated . 72
simulate_hmm . 75
simulate_initial_probs . 76
simulate_mhmm . 77
ssp . 79

biofam3c 3

ssplot . 84
state_names . 89
state_names<- . 89
summary.mhmm . 90
trim_model . 91
vcov.mhmm . 92

Index 94

biofam3c Three-channel biofam data

Description

Biofam data from the TraMineR package converted into three channels.

Format

A list including three sequence data sets for 2000 individuals with 16 state variables, and a separate
data frame with 1 id variable, 8 covariates, and 2 weight variables.

Details

This data is constructed from the biofam data in the TraMineR package. Here the original state
sequences are converted into three separate data sets: children, married, and left. These in-
clude the corresponding life states from age 15 to 30: childless or (having) children; single,
married, or divorced; and (living) with parents or left home.

Note that the divorced state does not give information on parenthood or residence, so a guess is
made based on preceeding states.

The fourth data frame covariates is a collection of additional variables from the original data:

idhous id
sex sex
birthyr birth year
nat_1_02 first nationality
plingu02 language of questionnaire
p02r01 religion
p02r04 religious participation
cspfaj father’s social status
cspmoj mother’s social status
wp00tbgp weights inflating to the Swiss population
wp00tbgs weights respecting sample size

The data is loaded by calling data(biofam3c). It was built using following code:

4 biofam3c

data("biofam" , package = "TraMineR")
biofam3c <- with(biofam, {

Building one channel per type of event left, children or married
bf <- as.matrix(biofam[, 10:25])
children <- bf == 4 | bf == 5 | bf == 6
married <- bf == 2 | bf == 3 | bf == 6
left <- bf == 1 | bf == 3 | bf == 5 | bf == 6 | bf == 7

children[children == TRUE] <- "children"
children[children == FALSE] <- "childless"
Divorced parents
div <- bf[(rowSums(bf == 7) > 0 & rowSums(bf == 5) > 0) |

(rowSums(bf == 7) > 0 & rowSums(bf == 6) > 0),]
children[rownames(bf) %in% rownames(div) & bf == 7] <- "children"

married[married == TRUE] <- "married"
married[married == FALSE] <- "single"
married[bf == 7] <- "divorced"

left[left == TRUE] <- "left home"
left[left == FALSE] <- "with parents"
Divorced living with parents (before divorce)
wp <- bf[(rowSums(bf == 7) > 0 & rowSums(bf == 2) > 0 &

rowSums(bf == 3) == 0 & rowSums(bf == 5) == 0 &
rowSums(bf == 6) == 0) |

(rowSums(bf == 7) > 0 & rowSums(bf == 4) > 0 &
rowSums(bf == 3) == 0 & rowSums(bf == 5) == 0 &
rowSums(bf == 6) == 0),]

left[rownames(bf) %in% rownames(wp) & bf == 7] <- "with parents"

list("children" = children, "married" = married, "left" = left,
"covariates" = biofam[, c(1:9, 26:27)])

})

Source

biofam data constructed from the Swiss Household Panel https://forscenter.ch/projects/
swiss-household-panel/

References

Müller, N. S., M. Studer, G. Ritschard (2007). Classification de parcours de vie à l’aide de l’optimal
matching. In XIVe Rencontre de l a Société francophone de classification (SFC 2007), Paris, 5 - 7
septembre 2007, pp. 157–160.

https://forscenter.ch/projects/swiss-household-panel/
https://forscenter.ch/projects/swiss-household-panel/

build_hmm 5

build_hmm Build a Hidden Markov Model

Description

Function build_hmm constructs a hidden Markov model object of class hmm.

Usage

build_hmm(
observations,
n_states,
transition_probs,
emission_probs,
initial_probs,
state_names = NULL,
channel_names = NULL,
...

)

Arguments

observations An stslist object (see seqdef) containing the sequences, or a list of such
objects (one for each channel).

n_states A scalar giving the number of hidden states. Not used if starting values for model
parameters are given with initial_probs, transition_probs, or emission_probs.

transition_probs

A matrix of transition probabilities.

emission_probs A matrix of emission probabilities or a list of such objects (one for each chan-
nel). Emission probabilities should follow the ordering of the alphabet of obser-
vations (alphabet(observations), returned as symbol_names).

initial_probs A vector of initial state probabilities.

state_names A list of optional labels for the hidden states. If NULL, the state names are taken
from the row names of the transition matrix. If this is also NULL, numbered states
are used.

channel_names A vector of optional names for the channels.

... Additional arguments to simulate_transition_probs.

Details

The returned model contains some attributes such as nobs and df, which define the number of
observations in the model and the number of estimable model parameters, used in computing BIC.
When computing nobs for a multichannel model with C channels, each observed value in a single
channel amounts to 1/C observation, i.e. a fully observed time point for a single sequence amounts
to one observation. For the degrees of freedom df, zero probabilities of the initial model are defined
as structural zeroes.

6 build_hmm

Value

Object of class hmm with the following elements:

observations State sequence object or a list of such objects containing the data.

transition_probs A matrix of transition probabilities.

emission_probs A matrix or a list of matrices of emission probabilities.

initial_probs A vector of initial probabilities.

state_names Names for hidden states.

symbol_names Names for observed states.

channel_names Names for channels of sequence data.

length_of_sequences (Maximum) length of sequences.

n_sequences Number of sequences.

n_symbols Number of observed states (in each channel).

n_states Number of hidden states.

n_channels Number of channels.

See Also

fit_model for estimating model parameters; and plot.hmm for plotting hmm objects.

Examples

Single-channel data

data("mvad", package = "TraMineR")

mvad_alphabet <- c(
"employment", "FE", "HE", "joblessness", "school",
"training"

)
mvad_labels <- c(

"employment", "further education", "higher education",
"joblessness", "school", "training"

)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86,

alphabet = mvad_alphabet, states = mvad_scodes,
labels = mvad_labels, xtstep = 6

)

Initializing an HMM with 4 hidden states, random starting values
init_hmm_mvad1 <- build_hmm(observations = mvad_seq, n_states = 4)

Starting values for the emission matrix
emiss <- matrix(NA, nrow = 4, ncol = 6)
emiss[1,] <- seqstatf(mvad_seq[, 1:12])[, 2] + 1
emiss[2,] <- seqstatf(mvad_seq[, 13:24])[, 2] + 1

build_hmm 7

emiss[3,] <- seqstatf(mvad_seq[, 25:48])[, 2] + 1
emiss[4,] <- seqstatf(mvad_seq[, 49:70])[, 2] + 1
emiss <- emiss / rowSums(emiss)

Starting values for the transition matrix

tr <- matrix(
c(
0.80, 0.10, 0.05, 0.05,
0.05, 0.80, 0.10, 0.05,
0.05, 0.05, 0.80, 0.10,
0.05, 0.05, 0.10, 0.80

),
nrow = 4, ncol = 4, byrow = TRUE

)

Starting values for initial state probabilities
init <- c(0.3, 0.3, 0.2, 0.2)

HMM with own starting values
init_hmm_mvad2 <- build_hmm(

observations = mvad_seq, transition_probs = tr,
emission_probs = emiss, initial_probs = init

)

###

Multichannel data

Three-state three-channel hidden Markov model
See ?hmm_biofam for a five-state version

data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married,

start = 15,
alphabet = c("single", "married", "divorced")

)
child_seq <- seqdef(biofam3c$children,

start = 15,
alphabet = c("childless", "children")

)
left_seq <- seqdef(biofam3c$left,

start = 15,
alphabet = c("with parents", "left home")

)

Define colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

8 build_hmm

Left-to-right HMM with 3 hidden states and random starting values
set.seed(1010)
init_hmm_bf1 <- build_hmm(

observations = list(marr_seq, child_seq, left_seq),
n_states = 3, left_right = TRUE, diag_c = 2

)

Starting values for emission matrices

emiss_marr <- matrix(NA, nrow = 3, ncol = 3)
emiss_marr[1,] <- seqstatf(marr_seq[, 1:5])[, 2] + 1
emiss_marr[2,] <- seqstatf(marr_seq[, 6:10])[, 2] + 1
emiss_marr[3,] <- seqstatf(marr_seq[, 11:16])[, 2] + 1
emiss_marr <- emiss_marr / rowSums(emiss_marr)

emiss_child <- matrix(NA, nrow = 3, ncol = 2)
emiss_child[1,] <- seqstatf(child_seq[, 1:5])[, 2] + 1
emiss_child[2,] <- seqstatf(child_seq[, 6:10])[, 2] + 1
emiss_child[3,] <- seqstatf(child_seq[, 11:16])[, 2] + 1
emiss_child <- emiss_child / rowSums(emiss_child)

emiss_left <- matrix(NA, nrow = 3, ncol = 2)
emiss_left[1,] <- seqstatf(left_seq[, 1:5])[, 2] + 1
emiss_left[2,] <- seqstatf(left_seq[, 6:10])[, 2] + 1
emiss_left[3,] <- seqstatf(left_seq[, 11:16])[, 2] + 1
emiss_left <- emiss_left / rowSums(emiss_left)

Starting values for transition matrix
trans <- matrix(

c(
0.9, 0.07, 0.03,
0, 0.9, 0.1,
0, 0, 1

),
nrow = 3, ncol = 3, byrow = TRUE

)

Starting values for initial state probabilities
inits <- c(0.9, 0.09, 0.01)

HMM with own starting values
init_hmm_bf2 <- build_hmm(

observations = list(marr_seq, child_seq, left_seq),
transition_probs = trans,
emission_probs = list(emiss_marr, emiss_child, emiss_left),
initial_probs = inits

)

build_lcm 9

build_lcm Build a Latent Class Model

Description

Function build_lcm is a shortcut for constructing a latent class model as a restricted case of an
mhmm object.

Usage

build_lcm(
observations,
n_clusters,
emission_probs,
formula = NULL,
data = NULL,
coefficients = NULL,
cluster_names = NULL,
channel_names = NULL

)

Arguments

observations An stslist object (see seqdef) containing the sequences, or a list of such
objects (one for each channel).

n_clusters A scalar giving the number of clusters/submodels (not used if starting values for
model parameters are given with emission_probs).

emission_probs A matrix containing emission probabilities for each class by rows, or in case
of multichannel data a list of such matrices. Note that the matrices must have
dimensions k x s where k is the number of latent classes and s is the number
of unique symbols (observed states) in the data. Emission probabilities should
follow the ordering of the alphabet of observations (alphabet(observations),
returned as symbol_names).

formula Optional formula of class formula for the mixture probabilities. Left side omit-
ted.

data A data frame containing the variables used in the formula. Ignored if no formula
is provided.

coefficients An optional kxl matrix of regression coefficients for time-constant covariates
for mixture probabilities, where l is the number of clusters and k is the number
of covariates. A logit-link is used for mixture probabilities. The first column is
set to zero.

cluster_names A vector of optional names for the classes/clusters.

channel_names A vector of optional names for the channels.

10 build_lcm

Value

Object of class mhmm with the following elements:

observations State sequence object or a list of such containing the data.

transition_probs A matrix of transition probabilities.

emission_probs A matrix or a list of matrices of emission probabilities.

initial_probs A vector of initial probabilities.

coefficients A matrix of parameter coefficients for covariates (covariates in rows, clusters in
columns).

X Covariate values for each subject.

cluster_names Names for clusters.

state_names Names for hidden states.

symbol_names Names for observed states.

channel_names Names for channels of sequence data

length_of_sequences (Maximum) length of sequences.

n_sequences Number of sequences.

n_symbols Number of observed states (in each channel).

n_states Number of hidden states.

n_channels Number of channels.

n_covariates Number of covariates.

n_clusters Number of clusters.

See Also

fit_model for estimating model parameters; summary.mhmm for a summary of a mixture model;
separate_mhmm for organizing an mhmm object into a list of separate hmm objects; and plot.mhmm
for plotting mixture models.

Examples

Simulate observations from two classes
set.seed(123)
obs <- seqdef(rbind(

matrix(sample(letters[1:3], 500, TRUE, prob = c(0.1, 0.6, 0.3)), 50, 10),
matrix(sample(letters[1:3], 200, TRUE, prob = c(0.4, 0.4, 0.2)), 20, 10)

))

Initialize the model
set.seed(9087)
model <- build_lcm(obs, n_clusters = 2)

Estimate model parameters
fit <- fit_model(model)

How many of the observations were correctly classified:

build_lcm 11

sum(summary(fit$model)$most_probable_cluster == rep(c("Class 2", "Class 1"), times = c(500, 200)))

##
Not run:
LCM for longitudinal data

Define sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <- c(

"employment", "FE", "HE", "joblessness", "school",
"training"

)
mvad_labels <- c(

"employment", "further education", "higher education",
"joblessness", "school", "training"

)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86,

alphabet = mvad_alphabet, states = mvad_scodes,
labels = mvad_labels, xtstep = 6

)

Initialize the LCM with random starting values
set.seed(7654)
init_lcm_mvad1 <- build_lcm(

observations = mvad_seq,
n_clusters = 2, formula = ~male, data = mvad

)

Own starting values for emission probabilities
emiss <- rbind(rep(1 / 6, 6), rep(1 / 6, 6))

LCM with own starting values
init_lcm_mvad2 <- build_lcm(

observations = mvad_seq,
emission_probs = emiss, formula = ~male, data = mvad

)

Estimate model parameters (EM algorithm with random restarts)
lcm_mvad <- fit_model(init_lcm_mvad1,

control_em = list(restart = list(times = 5))
)$model

Plot the LCM
plot(lcm_mvad, interactive = FALSE, ncol = 2)

###

Binomial regression (comparison to glm)

require("MASS")
data("birthwt")

12 build_mhmm

model <- build_lcm(
observations = seqdef(birthwt$low), emission_probs = diag(2),
formula = ~ age + lwt + smoke + ht, data = birthwt

)
fit <- fit_model(model)
summary(fit$model)
summary(glm(low ~ age + lwt + smoke + ht, binomial, data = birthwt))

Multinomial regression (comparison to multinom)

require("nnet")

set.seed(123)
n <- 100
X <- cbind(1, x1 = runif(n, 0, 1), x2 = runif(n, 0, 1))
coefs <- cbind(0, c(-2, 5, -2), c(0, -2, 2))
pr <- exp(X %*% coefs) + rnorm(n * 3)
pr <- pr / rowSums(pr)
y <- apply(pr, 1, which.max)
table(y)

model <- build_lcm(
observations = seqdef(y), emission_probs = diag(3),
formula = ~ x1 + x2, data = data.frame(X[, -1])

)
fit <- fit_model(model)
summary(fit$model)
summary(multinom(y ~ x1 + x2, data = data.frame(X[, -1])))

End(Not run)

build_mhmm Build a Mixture Hidden Markov Model

Description

Function build_mhmm constructs a mixture hidden Markov model object of class mhmm.

Usage

build_mhmm(
observations,
n_states,
transition_probs,
emission_probs,
initial_probs,
formula = NULL,
data = NULL,
coefficients = NULL,

build_mhmm 13

cluster_names = NULL,
state_names = NULL,
channel_names = NULL,
...

)

Arguments

observations An stslist object (see seqdef) containing the sequences, or a list of such
objects (one for each channel).

n_states A numerical vector giving the number of hidden states in each submodel (not
used if starting values for model parameters are given with initial_probs,
transition_probs, or emission_probs).

transition_probs

A list of matrices of transition probabilities for the submodel of each cluster.

emission_probs A list which contains matrices of emission probabilities or a list of such ob-
jects (one for each channel) for the submodel of each cluster. Note that the
matrices must have dimensions mxs where m is the number of hidden states
and s is the number of unique symbols (observed states) in the data. Emis-
sion probabilities should follow the ordering of the alphabet of observations
(alphabet(observations), returned as symbol_names).

initial_probs A list which contains vectors of initial state probabilities for the submodel of
each cluster.

formula Optional formula of class formula for the mixture probabilities. Left side omit-
ted.

data A data frame containing the variables used in the formula. Ignored if no formula
is provided.

coefficients An optional kxl matrix of regression coefficients for time-constant covariates
for mixture probabilities, where l is the number of clusters and k is the number
of covariates. A logit-link is used for mixture probabilities. The first column is
set to zero.

cluster_names A vector of optional names for the clusters.

state_names A list of optional labels for the hidden states. If NULL, the state names are taken
as row names of transition matrices. If this is also NULL, numbered states are
used.

channel_names A vector of optional names for the channels.

... Additional arguments to simulate_transition_probs.

Details

The returned model contains some attributes such as nobs and df, which define the number of
observations in the model and the number of estimable model parameters, used in computing BIC.
When computing nobs for a multichannel model with C channels, each observed value in a single
channel amounts to 1/C observation, i.e. a fully observed time point for a single sequence amounts
to one observation. For the degrees of freedom df, zero probabilities of the initial model are defined
as structural zeroes.

14 build_mhmm

Value

Object of class mhmm with following elements:

observations State sequence object or a list of such containing the data.

transition_probs A matrix of transition probabilities.

emission_probs A matrix or a list of matrices of emission probabilities.

initial_probs A vector of initial probabilities.

coefficients A matrix of parameter coefficients for covariates (covariates in rows, clusters in
columns).

X Covariate values for each subject.

cluster_names Names for clusters.

state_names Names for hidden states.

symbol_names Names for observed states.

channel_names Names for channels of sequence data

length_of_sequences (Maximum) length of sequences.

n_sequences Number of sequences.

n_symbols Number of observed states (in each channel).

n_states Number of hidden states.

n_channels Number of channels.

n_covariates Number of covariates.

n_clusters Number of clusters.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

fit_model for fitting mixture Hidden Markov models; summary.mhmm for a summary of a MHMM;
separate_mhmm for reorganizing a MHMM into a list of separate hidden Markov models; and
plot.mhmm for plotting mhmm objects.

Examples

data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married,

start = 15,
alphabet = c("single", "married", "divorced")

)
child_seq <- seqdef(biofam3c$children,

start = 15,
alphabet = c("childless", "children")

build_mhmm 15

)
left_seq <- seqdef(biofam3c$left,

start = 15,
alphabet = c("with parents", "left home")

)

Choosing colors
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

MHMM with random starting values, no covariates
set.seed(468)
init_mhmm_bf1 <- build_mhmm(

observations = list(marr_seq, child_seq, left_seq),
n_states = c(4, 4, 6),
channel_names = c("Marriage", "Parenthood", "Residence")

)

Starting values for emission probabilities

Cluster 1
B1_marr <- matrix(

c(
0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.3, 0.6, 0.1, # High probability for married
0.3, 0.3, 0.4

), # High probability for divorced
nrow = 4, ncol = 3, byrow = TRUE

)

B1_child <- matrix(
c(

0.9, 0.1, # High probability for childless
0.9, 0.1,
0.9, 0.1,
0.9, 0.1

),
nrow = 4, ncol = 2, byrow = TRUE

)

B1_left <- matrix(
c(

0.9, 0.1, # High probability for living with parents
0.1, 0.9, # High probability for having left home
0.1, 0.9,
0.1, 0.9

),
nrow = 4, ncol = 2, byrow = TRUE

)

16 build_mhmm

Cluster 2

B2_marr <- matrix(
c(
0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.1, 0.8, 0.1, # High probability for married
0.7, 0.2, 0.1

),
nrow = 4, ncol = 3, byrow = TRUE

)

B2_child <- matrix(
c(

0.9, 0.1, # High probability for childless
0.9, 0.1,
0.9, 0.1,
0.1, 0.9

),
nrow = 4, ncol = 2, byrow = TRUE

)

B2_left <- matrix(
c(

0.9, 0.1, # High probability for living with parents
0.1, 0.9,
0.1, 0.9,
0.1, 0.9

),
nrow = 4, ncol = 2, byrow = TRUE

)

Cluster 3
B3_marr <- matrix(

c(
0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.8, 0.1, 0.1,
0.1, 0.8, 0.1, # High probability for married
0.3, 0.4, 0.3,
0.1, 0.1, 0.8

), # High probability for divorced
nrow = 6, ncol = 3, byrow = TRUE

)

B3_child <- matrix(
c(

0.9, 0.1, # High probability for childless
0.9, 0.1,
0.5, 0.5,
0.5, 0.5,
0.5, 0.5,
0.1, 0.9

build_mhmm 17

),
nrow = 6, ncol = 2, byrow = TRUE

)

B3_left <- matrix(
c(

0.9, 0.1, # High probability for living with parents
0.1, 0.9,
0.5, 0.5,
0.5, 0.5,
0.1, 0.9,
0.1, 0.9

),
nrow = 6, ncol = 2, byrow = TRUE

)

Starting values for transition matrices
A1 <- matrix(

c(
0.80, 0.16, 0.03, 0.01,
0, 0.90, 0.07, 0.03,
0, 0, 0.90, 0.10,
0, 0, 0, 1

),
nrow = 4, ncol = 4, byrow = TRUE

)

A2 <- matrix(
c(

0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
0, 0.70, 0.10, 0.10, 0.05, 0.05,
0, 0, 0.85, 0.01, 0.10, 0.04,
0, 0, 0, 0.90, 0.05, 0.05,
0, 0, 0, 0, 0.90, 0.10,
0, 0, 0, 0, 0, 1

),
nrow = 6, ncol = 6, byrow = TRUE

)

Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

Birth cohort
biofam3c$covariates$cohort <- cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957))
biofam3c$covariates$cohort <- factor(

biofam3c$covariates$cohort,
labels = c("1909-1935", "1936-1945", "1946-1957")

)

MHMM with own starting values and covariates
init_mhmm_bf2 <- build_mhmm(

18 build_mm

observations = list(marr_seq, child_seq, left_seq),
initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
transition_probs = list(A1, A1, A2),
emission_probs = list(

list(B1_marr, B1_child, B1_left),
list(B2_marr, B2_child, B2_left),
list(B3_marr, B3_child, B3_left)

),
formula = ~ sex + cohort, data = biofam3c$covariates,
cluster_names = c("Cluster 1", "Cluster 2", "Cluster 3"),
channel_names = c("Marriage", "Parenthood", "Residence"),
state_names = list(

paste("State", 1:4), paste("State", 1:4),
paste("State", 1:6)

)
)

build_mm Build a Markov Model

Description

Function build_mm builds and automatically estimates a Markov model. It is also a shortcut for
constructing a Markov model as a restricted case of an hmm object.

Usage

build_mm(observations)

Arguments

observations An stslist object (see seqdef) containing the sequences.

Details

Unlike the other build functions in seqHMM, the build_mm function automatically estimates the
model parameters. In case of no missing values, initial and transition probabilities are directly
estimated from the observed initial state probabilities and transition counts. In case of missing
values, the EM algorithm is run once.

Note that it is possible that the data contains a symbol from which there are no transitions any-
where (even to itself), which would lead to a row in transition matrix full of zeros. In this case
the ‘build_mm‘ (as well as the EM algorithm) assumes that the the state is absorbing in a way that
probability of staying in this state is 1.

build_mm 19

Value

Object of class hmm with following elements:

observations State sequence object or a list of such containing the data.

transition_probs A matrix of transition probabilities.

emission_probs A matrix or a list of matrices of emission probabilities.

initial_probs A vector of initial probabilities.

state_names Names for hidden states.

symbol_names Names for observed states.

channel_names Names for channels of sequence data.

length_of_sequences (Maximum) length of sequences.

n_sequences Number of sequences.

n_symbols Number of observed states (in each channel).

n_states Number of hidden states.

n_channels Number of channels.

See Also

plot.hmm for plotting the model.

Examples

Construct sequence data
data("mvad", package = "TraMineR")

mvad_alphabet <-
c("employment", "FE", "HE", "joblessness", "school", "training")

mvad_labels <- c(
"employment", "further education", "higher education",
"joblessness", "school", "training"

)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86,

alphabet = mvad_alphabet,
states = mvad_scodes, labels = mvad_labels, xtstep = 6

)

Define a color palette for the sequence data
attr(mvad_seq, "cpal") <- colorpalette[[6]]

Estimate the Markov model
mm_mvad <- build_mm(observations = mvad_seq)

20 build_mmm

build_mmm Build a Mixture Markov Model

Description

Function build_mmm is a shortcut for constructing a mixture Markov model as a restricted case of
an mhmm object.

Usage

build_mmm(
observations,
n_clusters,
transition_probs,
initial_probs,
formula = NULL,
data = NULL,
coefficients = NULL,
cluster_names = NULL,
...

)

Arguments

observations An stslist object (see seqdef) containing the sequences.

n_clusters A scalar giving the number of clusters/submodels (not used if starting values for
model parameters are given with initial_probs and transition_probs).

transition_probs

A list of matrices of transition probabilities for submodels of each cluster.

initial_probs A list which contains vectors of initial state probabilities for submodels of each
cluster.

formula Optional formula of class formula for the mixture probabilities. Left side omit-
ted.

data A data frame containing the variables used in the formula. Ignored if no formula
is provided.

coefficients An optional kxl matrix of regression coefficients for time-constant covariates
for mixture probabilities, where l is the number of clusters and k is the number
of covariates. A logit-link is used for mixture probabilities. The first column is
set to zero.

cluster_names A vector of optional names for the clusters.

... Additional arguments to simulate_transition_probs.

build_mmm 21

Value

Object of class mhmm with following elements:

observations State sequence object or a list of such containing the data.

transition_probs A matrix of transition probabilities.

emission_probs A matrix or a list of matrices of emission probabilities.

initial_probs A vector of initial probabilities.

coefficients A matrix of parameter coefficients for covariates (covariates in rows, clusters in
columns).

X Covariate values for each subject.

cluster_names Names for clusters.

state_names Names for hidden states.

symbol_names Names for observed states.

channel_names Names for channels of sequence data

length_of_sequences (Maximum) length of sequences.

n_sequences Number of sequences.

n_symbols Number of observed states (in each channel).

n_states Number of hidden states.

n_channels Number of channels.

n_covariates Number of covariates.

n_clusters Number of clusters.

See Also

fit_model for estimating model parameters; summary.mhmm for a summary of a mixture model;
separate_mhmm for organizing an mhmm object into a list of separate hmm objects; and plot.mhmm
for plotting mixture models.

Examples

Define sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <- c(

"employment", "FE", "HE", "joblessness", "school",
"training"

)
mvad_labels <- c(

"employment", "further education", "higher education",
"joblessness", "school", "training"

)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86,

alphabet = mvad_alphabet, states = mvad_scodes,
labels = mvad_labels, xtstep = 6

22 cluster_names

)

Initialize the MMM
set.seed(123)
mmm_mvad <- build_mmm(

observations = mvad_seq,
n_clusters = 2,
formula = ~male, data = mvad

)

Not run:
Estimate model parameters
mmm_mvad <- fit_model(mmm_mvad)$model

Plot model (both clusters in the same plot)
require(igraph)
plot(mmm_mvad,

interactive = FALSE,
Modify legend position and properties
with.legend = "right", legend.prop = 0.3, cex.legend = 1.2,
Define vertex layout
layout = layout_as_star,
Modify edge properties
edge.label = NA, edge.arrow.size = 0.8, edge.curved = 0.2,
Modify vertex label positions (initial probabilities)
vertex.label.pos = c("left", "right", "right", "left", "left", "right")

)

Summary of the MMM
summary(mmm_mvad)

End(Not run)

cluster_names Get cluster names from mhmm object

Description

Get cluster names from mhmm object

Usage

cluster_names(object)

Arguments

object An object of class ‘mhmm‘.

Value

A character vector containing the cluster names.

cluster_names<- 23

cluster_names<- Set cluster names for mhmm object

Description

Set cluster names for mhmm object

Usage

cluster_names(object) <- value

Arguments

object An object of class ‘mhmm‘.

value A character vector containing the new cluster names.

Value

The modified object with updated cluster names.

colorpalette Color palettes

Description

A list containing ready defined color palettes with distinct colors using iWantHue. By default,
seqHMM uses these palettes when assigning colors.

Format

A list with 200 color palettes.

Source

iWantHue web page https://medialab.github.io/iwanthue/

See Also

plot_colors for visualization of color palettes. Implementations of iWantHue for R:

• https://github.com/hoesler/rwantshue

• https://github.com/johnbaums/hues

https://medialab.github.io/iwanthue/
https://github.com/hoesler/rwantshue
https://github.com/johnbaums/hues

24 fit_model

Examples

data("colorpalette")
Color palette with 9 colors
colorpalette[[9]]
Color palette with 24 colors
colorpalette[[24]]

estimate_coef Estimate Regression Coefficients of Mixture Hidden Markov Models

Description

Function estimate_coef estimates the regression coefficients of mixture hidden Markov models
and its restricted variants while keeping other parameters fixed.

Usage

estimate_coef(model, threads = 1)

Arguments

model An object of class hmm or mhmm.

threads Number of threads to use in parallel computing. The default is 1.

fit_model Estimate Parameters of (Mixture) Hidden Markov Models and Their
Restricted Variants

Description

Function fit_model estimates the parameters of mixture hidden Markov models and its restricted
variants using maximimum likelihood. Initial values for estimation are taken from the correspond-
ing components of the model with preservation of original zero probabilities.

Usage

fit_model(
model,
em_step = TRUE,
global_step = FALSE,
local_step = FALSE,
control_em = list(),
control_global = list(),
control_local = list(),

fit_model 25

lb,
ub,
threads = 1,
log_space = FALSE,
constraints = NULL,
fixed_inits = NULL,
fixed_emissions = NULL,
fixed_transitions = NULL,
...

)

Arguments

model An object of class hmm or mhmm.

em_step Logical. Whether or not to use the EM algorithm at the start of the parameter
estimation. The default is TRUE.

global_step Logical. Whether or not to use global optimization via nloptr (possibly after
the EM step). The default is FALSE.

local_step Logical. Whether or not to use local optimization via nloptr (possibly after the
EM and/or global steps). The default is FALSE.

control_em Optional list of control parameters for the EM algorithm. Possible arguments
are

maxeval The maximum number of iterations, the default is 1000. Note that
iteration counter starts with -1 so with maxeval=1 you get already two iter-
ations. This is for backward compatibility reasons.

print_level The level of printing. Possible values are 0 (prints nothing), 1
(prints information at the start and the end of the algorithm), 2 (prints at
every iteration), and for mixture models 3 (print also during optimization
of coefficients).

reltol Relative tolerance for convergence defined as (logLiknew−logLikold)/(abs(logLikold)+
0.1). The default is 1e-10.

restart A list containing options for possible EM restarts with the following
components:
times Number of restarts of the EM algorithm using random initial values.

The default is 0, i.e. no restarts.
transition Logical. Should the original transition probabilities be varied?

The default is TRUE.
emission Logical. Should the original emission probabilities be varied?

The default is TRUE.
sd Standard deviation for rnorm used in randomization. The default is

0.25.
maxeval Maximum number of iterations, the default is control_em$maxeval
print_level Level of printing in restarted EM steps. The default is control_em$print_level.
reltol Relative tolerance for convergence at restarted EM steps. The default

is control_em$reltol. If the relative change of the final model of the
restart phase is larger than the tolerance for the original EM phase, the

26 fit_model

final model is re-estimated with the original reltol and maxeval at the
end of the EM step.

n_optimum Save the log-likelihood values of the n_optimum best models
(from all estimated models including the the first EM run.). The default
is min(times + 1, 25).

use_original If TRUE. Use the initial values of the input model as starting
points for the permutations. Otherwise permute the results of the first
EM run.

control_global Optional list of additional arguments for nloptr argument opts. The default
values are

algorithm "NLOPT_GD_MLSL_LDS"

local_opts list(algorithm = "NLOPT_LD_LBFGS", ftol_rel = 1e-6, xtol_rel
= 1e-4)

maxeval 10000 (maximum number of iterations in global optimization algo-
rithm.)

maxtime 60 (maximum time for global optimization. Set to 0 for unlimited
time.)

control_local Optional list of additional arguments for nloptr argument opts. The default
values are

algorithm "NLOPT_LD_LBFGS"

ftol_rel 1e-10

xtol_rel 1e-8

maxeval 10000 (maximum number of iterations)

lb, ub Lower and upper bounds for parameters in Softmax parameterization. The de-
fault interval is [pmin(−25, 2 ∗ initialvalues), pmax(25, 2 ∗ initialvalues)],
except for gamma coefficients, where the scale of covariates is taken into ac-
count. Note that it might still be a good idea to scale covariates around unit
scale. Bounds are used only in the global optimization step.

threads Number of threads to use in parallel computing. The default is 1.

log_space Make computations using log-space instead of scaling for greater numerical sta-
bility at a cost of decreased computational performance. The default is FALSE.

constraints Integer vector defining equality constraints for emission distributions. Not sup-
ported for EM algorithm. See details.

fixed_inits Can be used to fix some of the probabilities to their initial values. Should have
same structure as model$initial_probs, where each element is either TRUE
(fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed
to 0. Not supported for EM algorithm. See details.

fixed_emissions

Can be used to fix some of the probabilities to their initial values. Should have
same structure as model$emission_probs, where each element is either TRUE
(fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed
to 0. Not supported for EM algorithm. See details.

fit_model 27

fixed_transitions

Can be used to fix some of the probabilities to their initial values. Should
have same structure as model$transition_probs, where each element is ei-
ther TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are
always fixed to 0. Not supported for EM algorithm. See details.

... Additional arguments to nloptr.

Details

The fitting function provides three estimation steps: 1) EM algorithm, 2) global optimization, and 3)
local optimization. The user can call for one method or any combination of these steps, but should
note that they are preformed in the above-mentioned order. The results from a former step are used
as starting values in a latter, except for some of global optimization algorithms (such as MLSL and
StoGO) which only use initial values for setting up the boundaries for the optimization.

It is possible to rerun the EM algorithm automatically using random starting values based on the
first run of EM. Number of restarts is defined by the restart argument in control_em. As the EM
algorithm is relatively fast, this method might be preferred option compared to the proper global
optimization strategy of step 2.

The default global optimization method (triggered via global_step = TRUE) is the multilevel single-
linkage method (MLSL) with the LDS modification (NLOPT_GD_MLSL_LDS as algorithm in control_global),
with L-BFGS as the local optimizer. The MLSL method draws random starting points and performs
a local optimization from each. The LDS modification uses low-discrepancy sequences instead of
pseudo-random numbers as starting points and should improve the convergence rate. In order to
reduce the computation time spent on non-global optima, the convergence tolerance of the local
optimizer is set relatively large. At step 3, a local optimization (L-BFGS by default) is run with a
lower tolerance to find the optimum with high precision.

There are some theoretical guarantees that the MLSL method used as the default optimizer in step 2
shoud find all local optima in a finite number of local optimizations. Of course, it might not always
succeed in a reasonable time. The EM algorithm can help in finding good boundaries for the search,
especially with good starting values, but in some cases it can mislead. A good strategy is to try a
couple of different fitting options with different combinations of the methods: e.g. all steps, only
global and local steps, and a few evaluations of EM followed by global and local optimization.

By default, the estimation time is limited to 60 seconds in global optimization step, so it is advisable
to change the default settings for the proper global optimization.

Any algorithm available in the nloptr function can be used for the global and local steps.

Equality constraints for emission distributions can be defined using the argument constraints.
This should be a vector with length equal to the number of states, with numbers starting from 1 and
increasing for each unique row of the emission probability matrix. For example in case of five states
with emissions of first and third states being equal, constraints = c(1, 2, 1, 3, 4). Similarly,
some of the model parameters can be fixed to their initial values by using arguments fixed_inits,
fixed_emissions, and fixed_transitions, where the structure of the arguments should be same
as the corresponding model components, so that TRUE value means that the parameter should
be fixed and FALSE otherwise (it is still treated as fixed if it is zero though). For both types of
constrains, only numerical optimisation (local or global) is available, and currently the gradients
are computed numerically (if needed) in these cases.

28 fit_model

In a case where the is no transitions from one state to anywhere (even to itself), the state is defined
as absorbing in a way that probability of staying in this state is fixed to 1. See also ‘build_mm‘
function.

Value

logLik Log-likelihood of the estimated model.

em_results Results after the EM step: log-likelihood (logLik), number of iterations (iterations),
relative change in log-likelihoods between the last two iterations (change), and the log-likelihoods
of the n_optimum best models after the EM step (best_opt_restart).

global_results Results after the global step.

local_results Results after the local step.

call The matched function call.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

build_hmm, build_mhmm, build_mm, build_mmm, and build_lcm for constructing different types of
models; summary.mhmm for a summary of a MHMM; separate_mhmm for reorganizing a MHMM
into a list of separate hidden Markov models; plot.hmm and plot.mhmm for plotting model objects;
and ssplot and mssplot for plotting stacked sequence plots of hmm and mhmm objects.

Examples

Hidden Markov model for mvad data

data("mvad", package = "TraMineR")

mvad_alphabet <-
c("employment", "FE", "HE", "joblessness", "school", "training")

mvad_labels <- c(
"employment", "further education", "higher education",
"joblessness", "school", "training"

)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86,

alphabet = mvad_alphabet,
states = mvad_scodes, labels = mvad_labels, xtstep = 6

)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

Starting values for the emission matrix
emiss <- matrix(

c(
0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC

fit_model 29

0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE
0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR
0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE
0.75, 0.05, 0.05, 0.05, 0.05, 0.05

), # EM
nrow = 5, ncol = 6, byrow = TRUE

)

Starting values for the transition matrix
trans <- matrix(0.025, 5, 5)
diag(trans) <- 0.9

Starting values for initial state probabilities
initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)

Building a hidden Markov model
init_hmm_mvad <- build_hmm(

observations = mvad_seq,
transition_probs = trans, emission_probs = emiss,
initial_probs = initial_probs

)

Not run:
set.seed(21)
fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 50)))
hmm_mvad <- fit_hmm_mvad$model

End(Not run)

save time, load the previously estimated model
data("hmm_mvad")

Markov model
Note: build_mm estimates model parameters from observations,
no need for estimating with fit_model unless there are missing observations

mm_mvad <- build_mm(observations = mvad_seq)

Comparing likelihoods, MM fits better
logLik(hmm_mvad)
logLik(mm_mvad)

Not run:
require("igraph") # for layout_in_circle

plot(mm_mvad,
layout = layout_in_circle, legend.prop = 0.3,
edge.curved = 0.3, edge.label = NA,
vertex.label.pos = c(0, 0, pi, pi, pi, 0)

)

##

30 fit_model

#' # Three-state three-channel hidden Markov model
See ?hmm_biofam for five-state version

data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married,

start = 15,
alphabet = c("single", "married", "divorced")

)
child_seq <- seqdef(biofam3c$children,

start = 15,
alphabet = c("childless", "children")

)
left_seq <- seqdef(biofam3c$left,

start = 15,
alphabet = c("with parents", "left home")

)

Define colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

Starting values for emission matrices

emiss_marr <- matrix(NA, nrow = 3, ncol = 3)
emiss_marr[1,] <- seqstatf(marr_seq[, 1:5])[, 2] + 1
emiss_marr[2,] <- seqstatf(marr_seq[, 6:10])[, 2] + 1
emiss_marr[3,] <- seqstatf(marr_seq[, 11:16])[, 2] + 1
emiss_marr <- emiss_marr / rowSums(emiss_marr)

emiss_child <- matrix(NA, nrow = 3, ncol = 2)
emiss_child[1,] <- seqstatf(child_seq[, 1:5])[, 2] + 1
emiss_child[2,] <- seqstatf(child_seq[, 6:10])[, 2] + 1
emiss_child[3,] <- seqstatf(child_seq[, 11:16])[, 2] + 1
emiss_child <- emiss_child / rowSums(emiss_child)

emiss_left <- matrix(NA, nrow = 3, ncol = 2)
emiss_left[1,] <- seqstatf(left_seq[, 1:5])[, 2] + 1
emiss_left[2,] <- seqstatf(left_seq[, 6:10])[, 2] + 1
emiss_left[3,] <- seqstatf(left_seq[, 11:16])[, 2] + 1
emiss_left <- emiss_left / rowSums(emiss_left)

Starting values for transition matrix
trans <- matrix(c(

0.9, 0.07, 0.03,
0, 0.9, 0.1,
0, 0, 1

), nrow = 3, ncol = 3, byrow = TRUE)

Starting values for initial state probabilities

fit_model 31

inits <- c(0.9, 0.09, 0.01)

Building hidden Markov model with initial parameter values
init_hmm_bf <- build_hmm(

observations = list(marr_seq, child_seq, left_seq),
transition_probs = trans,
emission_probs = list(emiss_marr, emiss_child, emiss_left),
initial_probs = inits

)

Fitting the model with different optimization schemes

Only EM with default values
hmm_1 <- fit_model(init_hmm_bf)
hmm_1$logLik # -24179.1

Only L-BFGS
hmm_2 <- fit_model(init_hmm_bf, em_step = FALSE, local_step = TRUE)
hmm_2$logLik # -22267.75

Global optimization via MLSL_LDS with L-BFGS as local optimizer and final polisher
This can be slow, use parallel computing by adjusting threads argument
(here threads = 1 for portability issues)
hmm_3 <- fit_model(

init_hmm_bf,
em_step = FALSE, global_step = TRUE, local_step = TRUE,
control_global = list(maxeval = 5000, maxtime = 0), threads = 1

)
hmm_3$logLik # -21675.42

EM with restarts, much faster than MLSL
set.seed(123)
hmm_4 <- fit_model(init_hmm_bf, control_em = list(restart = list(times = 5)))
hmm_4$logLik # -21675.4

Global optimization via StoGO with L-BFGS as final polisher
This can be slow, use parallel computing by adjusting threads argument
(here threads = 1 for portability issues)
set.seed(123)
hmm_5 <- fit_model(

init_hmm_bf,
em_step = FALSE, global_step = TRUE, local_step = TRUE,
lb = -50, ub = 50, control_global = list(
algorithm = "NLOPT_GD_STOGO",
maxeval = 2500, maxtime = 0

), threads = 1
)
hmm_5$logLik # -21675.4

##

Mixture HMM

32 fit_model

data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married,

start = 15,
alphabet = c("single", "married", "divorced")

)
child_seq <- seqdef(biofam3c$children,

start = 15,
alphabet = c("childless", "children")

)
left_seq <- seqdef(biofam3c$left,

start = 15,
alphabet = c("with parents", "left home")

)

Choosing colors
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

Starting values for emission probabilities
Cluster 1
B1_marr <- matrix(

c(
0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.3, 0.6, 0.1, # High probability for married
0.3, 0.3, 0.4

), # High probability for divorced
nrow = 4, ncol = 3, byrow = TRUE

)

B1_child <- matrix(
c(

0.9, 0.1, # High probability for childless
0.9, 0.1,
0.9, 0.1,
0.9, 0.1

),
nrow = 4, ncol = 2, byrow = TRUE

)

B1_left <- matrix(
c(

0.9, 0.1, # High probability for living with parents
0.1, 0.9, # High probability for having left home
0.1, 0.9,
0.1, 0.9

),
nrow = 4, ncol = 2, byrow = TRUE

)

fit_model 33

Cluster 2

B2_marr <- matrix(
c(
0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.1, 0.8, 0.1, # High probability for married
0.7, 0.2, 0.1

),
nrow = 4, ncol = 3, byrow = TRUE

)

B2_child <- matrix(
c(

0.9, 0.1, # High probability for childless
0.9, 0.1,
0.9, 0.1,
0.1, 0.9

),
nrow = 4, ncol = 2, byrow = TRUE

)

B2_left <- matrix(
c(

0.9, 0.1, # High probability for living with parents
0.1, 0.9,
0.1, 0.9,
0.1, 0.9

),
nrow = 4, ncol = 2, byrow = TRUE

)

Cluster 3
B3_marr <- matrix(

c(
0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.8, 0.1, 0.1,
0.1, 0.8, 0.1, # High probability for married
0.3, 0.4, 0.3,
0.1, 0.1, 0.8

), # High probability for divorced
nrow = 6, ncol = 3, byrow = TRUE

)

B3_child <- matrix(
c(

0.9, 0.1, # High probability for childless
0.9, 0.1,
0.5, 0.5,
0.5, 0.5,
0.5, 0.5,
0.1, 0.9

34 fit_model

),
nrow = 6, ncol = 2, byrow = TRUE

)

B3_left <- matrix(
c(

0.9, 0.1, # High probability for living with parents
0.1, 0.9,
0.5, 0.5,
0.5, 0.5,
0.1, 0.9,
0.1, 0.9

),
nrow = 6, ncol = 2, byrow = TRUE

)

Starting values for transition matrices
A1 <- matrix(

c(
0.80, 0.16, 0.03, 0.01,
0, 0.90, 0.07, 0.03,
0, 0, 0.90, 0.10,
0, 0, 0, 1

),
nrow = 4, ncol = 4, byrow = TRUE

)

A2 <- matrix(
c(

0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
0, 0.70, 0.10, 0.10, 0.05, 0.05,
0, 0, 0.85, 0.01, 0.10, 0.04,
0, 0, 0, 0.90, 0.05, 0.05,
0, 0, 0, 0, 0.90, 0.10,
0, 0, 0, 0, 0, 1

),
nrow = 6, ncol = 6, byrow = TRUE

)

Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

Birth cohort
biofam3c$covariates$cohort <- cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957))
biofam3c$covariates$cohort <- factor(

biofam3c$covariates$cohort,
labels = c("1909-1935", "1936-1945", "1946-1957")

)

Build mixture HMM
init_mhmm_bf <- build_mhmm(

fit_model 35

observations = list(marr_seq, child_seq, left_seq),
initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
transition_probs = list(A1, A1, A2),
emission_probs = list(

list(B1_marr, B1_child, B1_left),
list(B2_marr, B2_child, B2_left),
list(B3_marr, B3_child, B3_left)

),
formula = ~ sex + cohort, data = biofam3c$covariates,
channel_names = c("Marriage", "Parenthood", "Residence")

)

Fitting the model with different settings

Only EM with default values
mhmm_1 <- fit_model(init_mhmm_bf)
mhmm_1$logLik # -12713.08

Only L-BFGS
mhmm_2 <- fit_model(init_mhmm_bf, em_step = FALSE, local_step = TRUE)
mhmm_2$logLik # -12966.51

Use EM with multiple restarts
set.seed(123)
mhmm_3 <- fit_model(init_mhmm_bf, control_em = list(restart = list(times = 5, transition = FALSE)))
mhmm_3$logLik # -12713.08

End(Not run)

Left-to-right HMM with equality constraint:

set.seed(1)

Transition matrix
Either stay or move to next state
A <- diag(c(0.9, 0.95, 0.95, 1))
A[1, 2] <- 0.1
A[2, 3] <- 0.05
A[3, 4] <- 0.05

Emission matrix, rows 1 and 3 equal
B <- rbind(

c(0.4, 0.2, 0.3, 0.1),
c(0.1, 0.5, 0.1, 0.3),
c(0.4, 0.2, 0.3, 0.1),
c(0, 0.2, 0.4, 0.4)

)

Start from first state
init <- c(1, 0, 0, 0)

Simulate sequences

36 forward_backward

sim <- simulate_hmm(
n_sequences = 100,
sequence_length = 20, init, A, B

)

initial model, use true values as inits for faster estimation here
model <- build_hmm(sim$observations, init = init, trans = A, emiss = B)

estimate the model subject to constraints:
First and third row of emission matrix are equal (see details)
fit <- fit_model(model,

constraints = c(1, 2, 1, 3),
em_step = FALSE, local_step = TRUE

)
fit$model

Fix some emissions:

fixB <- matrix(FALSE, 4, 4)
fixB[2, 1] <- fixB[1, 3] <- TRUE # these are fixed to their initial values
fit <- fit_model(model,

fixed_emissions = fixB,
em_step = FALSE, local_step = TRUE

)
fit$model$emission_probs

forward_backward Forward and Backward Probabilities for Hidden Markov Model

Description

The forward_backward function computes scaled forward and backward probabilities of a hidden
Markov model.

Usage

forward_backward(model, forward_only = FALSE, log_space = FALSE, threads = 1)

Arguments

model Object of class hmm or mhmm.

forward_only If TRUE, only forward probabilities are computed. The default is FALSE.

log_space Compute forward and backward probabilities in logarithmic scale instead of
scaling. The default is FALSE.

threads Number of threads used in parallel computing. The default is 1.

gridplot 37

Value

List with components

forward_probs If log_space = FALSE, scaled forward probabilities, i.e. probability of state
given observations up to that time point. If log_space = TRUE, logarithms of
non-scaled forward probabilities.

backward_probs Scaled backward probabilities (log_space = FALSE), or logarithms of non-scaled
backward probabilities(log_space = TRUE).

scaling_factors

Sum of non-scaled forward probabilities at each time point. Only computed if
log_space = FALSE.

In case of multiple observations, these are computed independently for each sequence.

Examples

Load a pre-defined MHMM
data("mhmm_biofam")

Compute forward and backward probabilities
fb <- forward_backward(mhmm_biofam)

The most probable hidden state at time t
given the observations up to time t for the first subject:
apply(fb$forward_probs[, , 1], 2, which.max)

gridplot Plot Multidimensional Sequence Plots in a Grid

Description

Function gridplot plots multiple ssp objects to a grid.

Usage

gridplot(
x,
nrow = NA,
ncol = NA,
byrow = FALSE,
with.legend = "auto",
legend.pos = "auto",
legend.pos2 = "center",
title.legend = "auto",
ncol.legend = "auto",
with.missing.legend = "auto",
row.prop = "auto",

38 gridplot

col.prop = "auto",
cex.legend = 1

)

Arguments

x A list of ssp objects.

nrow, ncol Optional arguments to arrange plots.

byrow Controls the order of plotting. Defaults to FALSE, i.e. plots are arranged column-
wise.

with.legend Defines if and how the legends for the states are plotted. The default value
"auto" (equivalent to TRUE and "many") creates separate legends for each re-
quested plot. Other possibilities are "combined" (all legends combined) and
FALSE (no legend).

legend.pos Defines the positions of the legend boxes relative to the whole plot. Either one
of "bottom" (equivalent to "auto") or "right", or a numerical vector of grid
cells (by order) to print the legends to (the cells must be in one row/column).

legend.pos2 Defines the positions of the legend boxes relative to the cell(s). One of "bottomright",
"bottom", "bottomleft", "left", "topleft", "top" (the default), "topright",
"right" and "center".

title.legend The titles for the legend boxes. The default "auto" takes the titles from the
channel labels provided by the first object in x. NA prints no title.

ncol.legend (A vector of) the number of columns for the legend(s). The default "auto"
creates one column for each legend.

with.missing.legend

If set to "auto" (the default), a legend for the missing state is added automat-
ically if one or more of the sequences in data contain missing states. With the
value TRUE a legend for the missing state is added in any case; equivalently
FALSE omits the legend for the missing state.

row.prop Sets the proportions of the row heights of the grid. The default value is "auto"
for even row heights. Takes a vector of values from 0 to 1, with values summing
to 1.

col.prop Sets the proportion of the column heights of the grid. The default value is
"auto" for even column widths. Takes a vector of values from 0 to 1, with
values summing to 1.

cex.legend Expansion factor for setting the size of the font for the labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

See Also

ssp for defining the plot before using gridplot, and plot.ssp for plotting only one ssp object.

gridplot 39

Examples

Not run:
data("biofam3c")

Creating sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

Preparing plot for state distribution plots of observations for women
ssp_f <- ssp(

list(
child_seq[biofam3c$covariates$sex == "woman",],
marr_seq[biofam3c$covariates$sex == "woman",],
left_seq[biofam3c$covariates$sex == "woman",]

),
type = "d", plots = "obs", title = "Women",
ylab = c("Children", "Married", "Left home")

)

Preparing plot for state distribution plots of observations for men
(Updating the previous plot, only arguments that change values)
ssp_m <- update(ssp_f,

title = "Men",
x = list(

child_seq[biofam3c$covariates$sex == "man",],
marr_seq[biofam3c$covariates$sex == "man",],
left_seq[biofam3c$covariates$sex == "man",]

)
)

Plotting state distribution plots of observations for women and men in two columns
gridplot(list(ssp_f, ssp_m), ncol = 2, with.legend = FALSE)

Preparing plots for women's state distributions
ssp_f2 <- ssp(

list(
marr_seq[biofam3c$covariates$sex == "woman",],
child_seq[biofam3c$covariates$sex == "woman",],
left_seq[biofam3c$covariates$sex == "woman",]

),
type = "d", border = NA, with.legend = FALSE,
title = "State distributions for women", title.n = FALSE, xtlab = 15:30,
ylab.pos = c(1, 2, 1), ylab = c("Married", "Children", "Left home")

)

40 hidden_paths

The same plot with sequences instead of state distributions
ssp_f3 <- update(

ssp_f2,
type = "I", sortv = "mds.obs", title = "Sequences for women"

)

State distributions with men's data
ssp_m2 <- update(

ssp_f2,
title = "State distributions for men",
x = list(
marr_seq[biofam3c$covariates$sex == "man",],
child_seq[biofam3c$covariates$sex == "man",],
left_seq[biofam3c$covariates$sex == "man",]

)
)

Men's sequences
ssp_m3 <- update(

ssp_m2,
type = "I", sortv = "mds.obs", title = "Sequences for men"

)

Plotting state distributions and index plots of observations
for women and men in two columns (+ one column for legends)
gridplot(

list(ssp_f2, ssp_f3, ssp_m2, ssp_m3),
ncol = 3, byrow = TRUE,
with.legend = "combined", legend.pos = "right", col.prop = c(0.35, 0.35, 0.3)

)

The same with different positioning and fixed cells for legends
gridplot(

list(ssp_f2, ssp_f3, ssp_m2, ssp_m3),
ncol = 2, nrow = 3, byrow = TRUE,
defining the legend positions by the cell numbers
legend.pos = 3:4

)

End(Not run)

hidden_paths Most Probable Paths of Hidden States

Description

Function hidden_paths computes the most probable path of hidden states of a (mixture) hidden
Markov model given the observed sequences.

hmm_biofam 41

Usage

hidden_paths(model, respect_void = TRUE)

Arguments

model A hidden Markov model of class hmm or a mixture HMM of class mhmm.

respect_void If TRUE (default), states at the time points corresponding to TraMineR’s void in
the observed sequences are set to void in the hidden state sequences as well.

Value

The most probable paths of hidden states as an stslist object (see seqdef). The log-probability
is included as an attribute log_prob.

See Also

hmm_biofam for information on the model used in the example; and seqIplot, ssplot, or mssplot
for plotting hidden paths.

Examples

Load a pre-defined HMM
data("hmm_biofam")

Compute the most probable hidden state paths given the data and the model
mpp <- hidden_paths(hmm_biofam)

Plot hidden paths for the first 100 individuals
ssplot(mpp, type = "I", tlim = 1:100)

Because the model structure is so sparse that the posterior probabilities are
mostly peaked to single state at each time point, the joint probability of
observations and most probable paths of hidden states is almost identical to
log-likelihood:

sum(attr(mpp, "log_prob"))
logLik(hmm_biofam)

hmm_biofam Hidden Markov model for the biofam data

Description

A five-state hidden Markov model (HMM) fitted for the biofam data.

Format

A hidden Markov model of class hmm; a left-to-right model with four hidden states.

42 hmm_biofam

Details

The model is loaded by calling data(hmm_biofam). It was created with the following code:

data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
alphabet = c("single", "married", "divorced"))

child_seq <- seqdef(biofam3c$children, start = 15,
alphabet = c("childless", "children"))

left_seq <- seqdef(biofam3c$left, start = 15,
alphabet = c("with parents", "left home"))

Choosing colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

init <- c(0.9, 0.05, 0.02, 0.02, 0.01)

Starting values for transition matrix
trans <- matrix(
c(0.8, 0.10, 0.05, 0.03, 0.02,
0, 0.9, 0.05, 0.03, 0.02,
0, 0, 0.9, 0.07, 0.03,
0, 0, 0, 0.9, 0.1,
0, 0, 0, 0, 1),

nrow = 5, ncol = 5, byrow = TRUE)

Starting values for emission matrices
emiss_marr <- matrix(
c(0.9, 0.05, 0.05, # High probability for single
0.9, 0.05, 0.05,
0.05, 0.9, 0.05, # High probability for married
0.05, 0.9, 0.05,
0.3, 0.3, 0.4), # mixed group

nrow = 5, ncol = 3, byrow = TRUE)

emiss_child <- matrix(
c(0.9, 0.1, # High probability for childless
0.9, 0.1,
0.1, 0.9,
0.1, 0.9,
0.5, 0.5),

nrow = 5, ncol = 2, byrow = TRUE)

emiss_left <- matrix(
c(0.9, 0.1, # High probability for living with parents

hmm_mvad 43

0.1, 0.9,
0.1, 0.9,
0.1, 0.9,
0.5, 0.5),

nrow = 5, ncol = 2, byrow = TRUE)

initmod <- build_hmm(
observations = list(marr_seq, child_seq, left_seq),
initial_probs = init, transition_probs = trans,
emission_probs = list(emiss_marr, emiss_child,
emiss_left),

channel_names = c("Marriage", "Parenthood", "Residence"))

fit_biofam <- fit_model(initmod, em = FALSE, local = TRUE)
hmm_biofam <- fit_biofam$model

See Also

Examples of building and fitting HMMs in build_hmm and fit_model; and biofam for the original
data and biofam3c for the three-channel version used in this model.

Examples

Plotting the model
plot(hmm_biofam)

hmm_mvad Hidden Markov model for the mvad data

Description

A hidden Markov model (MMM) fitted for the mvad data.

Format

A hidden Markov model of class hmm; unrestricted model with six hidden states.

Details

Model was created with the following code:

data("mvad", package = "TraMineR")

mvad_alphabet <-
c("employment", "FE", "HE", "joblessness", "school", "training")

mvad_labels <- c("employment", "further education", "higher education",

44 logLik.hmm

"joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
states = mvad_scodes, labels = mvad_labels, xtstep = 6)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

Starting values for the emission matrix
emiss <- matrix(
c(0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC
0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE
0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR
0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE
0.75, 0.05, 0.05, 0.05, 0.05, 0.05),# EM

nrow = 5, ncol = 6, byrow = TRUE)

Starting values for the transition matrix
trans <- matrix(0.025, 5, 5)
diag(trans) <- 0.9

Starting values for initial state probabilities
initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)

Building a hidden Markov model
init_hmm_mvad <- build_hmm(observations = mvad_seq,
transition_probs = trans, emission_probs = emiss,
initial_probs = initial_probs)

set.seed(21)
fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 100)))
hmm_mvad <- fit_hmm_mvad$model

See Also

Examples of building and fitting HMMs in build_hmm and fit_model; and mvad for more infor-
mation on the data.

Examples

data("hmm_mvad")

Plotting the model
plot(hmm_mvad)

logLik.hmm Log-likelihood of the Hidden Markov Model

logLik.mhmm 45

Description

Function logLik.hmm computes the log-likelihood value of a hidden Markov model.

Usage

S3 method for class 'hmm'
logLik(object, partials = FALSE, threads = 1, log_space = FALSE, ...)

Arguments

object A hidden Markov model of class hmm.

partials Return a vector containing the individual contributions of each sequence to the
total log-likelihood. The default is FALSE, which returns the sum of all log-
likelihood components.

threads Number of threads to use in parallel computing. The default is 1.

log_space Make computations using log-space instead of scaling for greater numerical sta-
bility at the cost of decreased computational performance. The default is TRUE.

... Ignored.

Value

Log-likelihood of the hidden Markov model. This is an object of class logLik with attributes nobs
and df inherited from the model object.

See Also

build_hmm and fit_model for building and fitting Hidden Markov models.

logLik.mhmm Log-likelihood of the Mixture Hidden Markov Model

Description

Function logLik.mhmm computes the log-likelihood value of a mixture hidden Markov model.

Usage

S3 method for class 'mhmm'
logLik(object, partials = FALSE, threads = 1, log_space = FALSE, ...)

46 mc_to_sc

Arguments

object A mixture hidden Markov model of class mhmm.
partials Return a vector containing the individual contributions of each sequence to the

total log-likelihood. The default is FALSE, which returns the sum of all log-
likelihood components.

threads Number of threads to use in parallel computing. The default is 1.
log_space Make computations using log-space instead of scaling for greater numerical sta-

bility at the cost of decreased computational performance. The default is TRUE.
... Ignored.

Value

Log-likelihood of the mixture hidden Markov model. This is an object of class logLik with at-
tributes nobs and df inherited from the model object.

See Also

build_mhmm and fit_model for building and fitting mixture Hidden Markov models.

mc_to_sc Transform a Multichannel Hidden Markov Model into a Single Chan-
nel Representation

Description

Transforms data and parameters of a multichannel model into a single channel model. Observed
states (symbols) are combined and parameters multiplied across channels.

Usage

mc_to_sc(model, combine_missing = TRUE, all_combinations = FALSE, cpal)

Arguments

model An object of class hmm or mhmm.
combine_missing

Controls whether combined states of observations at time t are coded missing
(coded with ∗ in stslists) if one or more of the channels include missing in-
formation at time t. Defaults to TRUE. FALSE keeps missing states as they are,
producing more states in data; e.g. single/childless/∗ where the observation
in channel 3 is missing.

all_combinations

Controls whether all possible combinations of observed states are included in
the single channel representation or only combinations that are found in the
data. Defaults to FALSE, i.e. only actual observations are included.

cpal The color palette used for the new combined symbols. Optional in a case where
the number of symbols is less or equal to 200 (in which case the seqHMM::colorpalette
is used).

mc_to_sc_data 47

Details

Note that in case of no missing observations, the log-likelihood of the original and transformed
models are identical but the AIC and BIC can be different as the model attribute df is recomputed
based on the single channel representation.

See Also

build_hmm and fit_model for building and fitting Hidden Markov models; and hmm_biofam for
information on the model used in the example.

Examples

Loading a hidden Markov model of the biofam data (hmm object)
data("hmm_biofam")

Convert the multichannel model to a single-channel model
sc <- mc_to_sc(hmm_biofam)

Likelihoods of the single-channel and the multichannel model are the same
(Might not be true if there are missing observations)
logLik(sc)
logLik(hmm_biofam)

mc_to_sc_data Merge Multiple Sequence Objects into One (from Multichannel to Sin-
gle Channel Data)

Description

Function mc_to_sc_data combines observed states of multiple sequence objects into one, time
point by time point.

Usage

mc_to_sc_data(data, combine_missing = TRUE, all_combinations = FALSE, cpal)

Arguments

data A list of state sequence objects (stslists) created with the seqdef function.
combine_missing

Controls whether combined states of observations at time t are coded missing
(coded with * in stslists) if one or more of the channels include missing in-
formation at time t. Defaults to TRUE. FALSE keeps missing states as they are,
producing more states in data; e.g. single/childless/* where the observation in
channel 3 is missing.

48 mc_to_sc_data

all_combinations

Controls whether all possible combinations of observed states are included in
the single channel representation or only combinations that are found in the
data. Defaults to FALSE, i.e. only actual observations are included.

cpal The color palette used for the new combined symbols. Optional in a case where
the number of symbols is less or equal to 200 (in which case the seqHMM::colorpalette
is used).

See Also

mc_to_sc for transforming multichannel hmm or mhmm objects into single-channel representations;
ssplot for plotting multiple sequence data sets in the same plot; and seqdef for creating state
sequence objects.

Examples

Load three-channel sequence data
data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married,

start = 15,
alphabet = c("single", "married", "divorced")

)
child_seq <- seqdef(biofam3c$children,

start = 15,
alphabet = c("childless", "children")

)
left_seq <- seqdef(biofam3c$left,

start = 15,
alphabet = c("with parents", "left home")

)

Define colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

Converting multichannel data to single-channel data
sc_data <- mc_to_sc_data(list(marr_seq, child_seq, left_seq))

10 combined states
alphabet(sc_data)

Colors for combined states
attr(sc_data, "cpal") <- colorpalette[[14]][1:10]

Plotting sequences for the first 10 subjects
ssplot(

list(
"Marriage" = marr_seq, "Parenthood" = child_seq,
"Residence" = left_seq, "Combined" = sc_data

mhmm_biofam 49

),
type = "I",
tlim = 1:10

)

Including all combinations (whether or not available in data)
sc_data_all <- mc_to_sc_data(list(marr_seq, child_seq, left_seq),

all_combinations = TRUE
)

12 combined states, 2 with no observations in data
seqstatf(sc_data_all)

mhmm_biofam Mixture hidden Markov model for the biofam data

Description

A mixture hidden Markov model (MHMM) fitted for the biofam data.

Format

A mixture hidden Markov model of class mhmm: three clusters with left-to-right models including 4,
4, and 6 hidden states. Two covariates, sex and cohort, explaining the cluster membership.

Details

The model was created with the following code:

data("biofam3c")

Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
alphabet = c("single", "married", "divorced"))

child_seq <- seqdef(biofam3c$children, start = 15,
alphabet = c("childless", "children"))

left_seq <- seqdef(biofam3c$left, start = 15,
alphabet = c("with parents", "left home"))

Choosing colors
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

Starting values for emission probabilities
Cluster 1

50 mhmm_biofam

B1_marr <- matrix(
c(0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.3, 0.6, 0.1, # High probability for married
0.3, 0.3, 0.4), # High probability for divorced

nrow = 4, ncol = 3, byrow = TRUE)

B1_child <- matrix(
c(0.9, 0.1, # High probability for childless
0.9, 0.1,
0.9, 0.1,
0.9, 0.1),

nrow = 4, ncol = 2, byrow = TRUE)

B1_left <- matrix(
c(0.9, 0.1, # High probability for living with parents
0.1, 0.9, # High probability for having left home
0.1, 0.9,
0.1, 0.9),

nrow = 4, ncol = 2, byrow = TRUE)

Cluster 2

B2_marr <- matrix(
c(0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,
0.1, 0.8, 0.1, # High probability for married
0.7, 0.2, 0.1),

nrow = 4, ncol = 3, byrow = TRUE)

B2_child <- matrix(
c(0.9, 0.1, # High probability for childless
0.9, 0.1,
0.9, 0.1,
0.1, 0.9),

nrow = 4, ncol = 2, byrow = TRUE)

B2_left <- matrix(
c(0.9, 0.1, # High probability for living with parents
0.1, 0.9,
0.1, 0.9,
0.1, 0.9),

nrow = 4, ncol = 2, byrow = TRUE)

Cluster 3
B3_marr <- matrix(
c(0.8, 0.1, 0.1, # High probability for single
0.8, 0.1, 0.1,

mhmm_biofam 51

0.8, 0.1, 0.1,
0.1, 0.8, 0.1, # High probability for married
0.3, 0.4, 0.3,
0.1, 0.1, 0.8), # High probability for divorced

nrow = 6, ncol = 3, byrow = TRUE)

B3_child <- matrix(
c(0.9, 0.1, # High probability for childless
0.9, 0.1,
0.5, 0.5,
0.5, 0.5,
0.5, 0.5,
0.1, 0.9),

nrow = 6, ncol = 2, byrow = TRUE)

B3_left <- matrix(
c(0.9, 0.1, # High probability for living with parents
0.1, 0.9,
0.5, 0.5,
0.5, 0.5,
0.1, 0.9,
0.1, 0.9),

nrow = 6, ncol = 2, byrow = TRUE)

Starting values for transition matrices
A1 <- matrix(
c(0.80, 0.16, 0.03, 0.01,
0, 0.90, 0.07, 0.03,
0, 0, 0.90, 0.10,
0, 0, 0, 1),

nrow = 4, ncol = 4, byrow = TRUE)

A2 <- matrix(
c(0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
0, 0.70, 0.10, 0.10, 0.05, 0.05,
0, 0, 0.85, 0.01, 0.10, 0.04,
0, 0, 0, 0.90, 0.05, 0.05,
0, 0, 0, 0, 0.90, 0.10,
0, 0, 0, 0, 0, 1),

nrow = 6, ncol = 6, byrow = TRUE)

Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

Birth cohort
biofam3c$covariates$cohort <- factor(cut(biofam3c$covariates$birthyr,

52 mhmm_mvad

c(1908, 1935, 1945, 1957)), labels = c("1909-1935", "1936-1945", "1946-1957"))

Build mixture HMM
init_mhmm_bf <- build_mhmm(
observations = list(marr_seq, child_seq, left_seq),
initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
transition_probs = list(A1, A1, A2),
emission_probs = list(list(B1_marr, B1_child, B1_left),
list(B2_marr, B2_child, B2_left),
list(B3_marr, B3_child, B3_left)),

formula = ~sex + cohort, data = biofam3c$covariates,
channel_names = c("Marriage", "Parenthood", "Residence"))

Fitting the model
mhmm_biofam <- fit_model(init_mhmm_bf)$model

See Also

Examples of building and fitting MHMMs in build_mhmm and fit_model; and biofam for the
original data and biofam3c for the three-channel version used in this model.

Examples

data("mhmm_biofam")

use conditional_se = FALSE for more accurate standard errors
(these are considerebly slower to compute)
summary(mhmm_biofam$model)

if (interactive()) {
Plotting the model for each cluster (change with Enter)
plot(mhmm_biofam)

}

mhmm_mvad Mixture hidden Markov model for the mvad data

Description

A mixture hidden Markov model (MHMM) fitted for the mvad data.

Format

A mixture hidden Markov model of class mhmm: two clusters including 3 and 4 hidden states. No
covariates.

mhmm_mvad 53

Details

The model is loaded by calling data(mhmm_mvad). It was created with the following code:

data("mvad", package = "TraMineR")

mvad_alphabet <-
c("employment", "FE", "HE", "joblessness", "school", "training")

mvad_labels <- c("employment", "further education", "higher education",
"joblessness", "school", "training")

mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
states = mvad_scodes, labels = mvad_labels, xtstep = 6)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

Starting values for the emission matrices
emiss_1 <- matrix(
c(0.01, 0.01, 0.01, 0.01, 0.01, 0.95,
0.95, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.95, 0.01, 0.01),

nrow = 3, ncol = 6, byrow = TRUE)

emiss_2 <- matrix(
c(0.01, 0.01, 0.01, 0.06, 0.90, 0.01,
0.01, 0.95, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.95, 0.01, 0.01, 0.01,
0.95, 0.01, 0.01, 0.01, 0.01, 0.01),

nrow = 4, ncol = 6, byrow = TRUE)

Starting values for the transition matrix

trans_1 <- matrix(
c(0.95, 0.03, 0.02,
0.01, 0.98, 0.01,
0.01, 0.01, 0.98),

nrow = 3, ncol = 3, byrow = TRUE)

trans_2 <- matrix(
c(0.97, 0.01, 0.01, 0.01,
0.01, 0.97, 0.01, 0.01,
0.01, 0.01, 0.97, 0.01,
0.01, 0.01, 0.01, 0.97),

nrow = 4, ncol = 4, byrow = TRUE)

Starting values for initial state probabilities
initial_probs_1 <- c(0.5, 0.25, 0.25)
initial_probs_2 <- c(0.4, 0.4, 0.1, 0.1)

54 mssplot

Building a hidden Markov model with starting values
init_mhmm_mvad <- build_mhmm(observations = mvad_seq,
transition_probs = list(trans_1, trans_2),
emission_probs = list(emiss_1, emiss_2),
initial_probs = list(initial_probs_1, initial_probs_2))

Fit the model
set.seed(123)
mhmm_mvad <- fit_model(init_mhmm_mvad, control_em = list(restart = list(times = 25)))$model

See Also

Examples of building and fitting MHMMs in build_mhmm and fit_model; and mvad for more
information on the data.

Examples

data("mhmm_mvad")

summary(mhmm_mvad)

if (interactive()) {
Plotting the model for each cluster (change with Enter)
plot(mhmm_mvad)

}

mssplot Interactive Stacked Plots of Multichannel Sequences and/or Most
Probable Paths for Mixture Hidden Markov Models

Description

Function mssplot plots stacked sequence plots of observation sequences and/or most probable
hidden state paths for each model of the mhmm object (model chosen according to the most probable
path).

Usage

mssplot(
x,
ask = FALSE,
which.plots = NULL,
hidden.paths = NULL,
plots = "obs",
type = "d",
tlim = 0,

mssplot 55

sortv = NULL,
sort.channel = 1,
dist.method = "OM",
with.missing = FALSE,
missing.color = NULL,
title = NA,
title.n = TRUE,
cex.title = 1,
title.pos = 1,
with.legend = "auto",
ncol.legend = "auto",
with.missing.legend = "auto",
legend.prop = 0.3,
cex.legend = 1,
hidden.states.colors = "auto",
hidden.states.labels = "auto",
xaxis = TRUE,
xlab = NA,
xtlab = NULL,
xlab.pos = 1,
ylab = "auto",
hidden.states.title = "Hidden states",
yaxis = FALSE,
ylab.pos = "auto",
cex.lab = 1,
cex.axis = 1,
respect_void = TRUE,
...

)

Arguments

x Mixture hidden Markov model object of class mhmm.

ask If TRUE and which.plots is NULL, plot.mhmm operates in interactive mode,
via menu. Defaults to FALSE.

which.plots The number(s) of the requested model(s) as an integer vector. The default NULL
produces all plots.

hidden.paths Output from the hidden_paths function. The default value NULL computes hid-
den paths automatically, if needed.

plots What to plot. One of "obs" for observations (the default), "hidden.paths" for
most probable paths of hidden states, or "both" for observations and hidden
paths together.

type The type of the plot. Available types are "I" for index plots and "d" for state
distribution plots (the default). See seqplot for details.

tlim Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted).
For example, tlim = 1:10 plots the first ten subjects in data.

56 mssplot

sortv A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs",
or "mds.hidden") for type = "I". The value "mds.hidden" is only available
when which = "both" and which = "hidden.paths". Options "mds.obs" and
"mds.hidden" automatically arrange the sequences according to the scores of
multidimensional scaling (using cmdscale) for the observed data or hidden
states paths. MDS scores are computed from distances/dissimilarities using a
metric defined in argument dist.method. See plot.stslist for more details
on "from.start" and "from.end".

sort.channel The number of the channel according to which the "from.start" or "from.end"
sorting is done. Sorting according to hidden states is called with value 0. The
default value is 1 (the first channel).

dist.method The metric to be used for computing the distances of the sequences if multi-
dimensional scaling is used for sorting. One of "OM" (optimal matching, the
default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest
common suffix), "LCS" (longest common subsequence), "HAM" (Hamming
distance), and "DHD" (dynamic Hamming distance). Transition rates are used
for defining substitution costs if needed. See seqdef for more information on
the metrics.

with.missing Controls whether missing states are included in state distribution plots (type =
"d"). The default is FALSE.

missing.color Alternative color for representing missing values in the sequences. By default,
this color is taken from the missing.color attribute of the sequence object.

title A vector of main titles for the graphics. The default is NA: if title.n = TRUE,
the name of the cluster and the number of subjects is plotted. FALSE prints no
titles, even when title.n = TRUE.

title.n Controls whether the number of subjects is printed in the main titles of the plots.
The default is TRUE: n is plotted if title is anything but FALSE.

cex.title Expansion factor for setting the size of the font for the main titles. The default
value is 1. Values lesser than 1 will reduce the size of the font, values greater
than 1 will increase the size.

title.pos Controls the position of the main titles of the plots. The default value is 1.
Values greater than 1 will place the title higher.

with.legend Defines if and where the legend for the states is plotted. The default value
"auto" (equivalent to TRUE and "right") creates separate legends for each
requested plot and positiones them on the right-hand side of the plot. Other
possible values are "bottom", "right.combined", and "bottom.combined",
of which the last two create a combined legend in the selected position. FALSE
prints no legend.

ncol.legend (A vector of) the number of columns for the legend(s). The default "auto"
creates one column for each legend.

with.missing.legend

If set to "auto" (the default), a legend for the missing state is added automati-
cally if one or more of the sequences in the data/channel contains missing states
and type = "I". If type = "d" missing states are omitted from the legends un-
less with.missing = TRUE. With the value TRUE a legend for the missing state
is added in any case; equivalently FALSE omits the legend for the missing state.

mssplot 57

legend.prop Sets the proportion of the graphic area used for plotting the legend when with.legend
is not FALSE. The default value is 0.3. Takes values from 0 to 1.

cex.legend Expansion factor for setting the size of the font for the labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

hidden.states.colors

A vector of colors assigned to hidden states. The default value "auto" uses the
colors assigned to the stslist object (created with seqdef) if hidden.paths
is given; otherwise colors from colorpalette are automatically used.

hidden.states.labels

Labels for the hidden states. The default value "auto" uses the names provided
in x$state_names if x is an hmm object; otherwise the number of the hidden
state.

xaxis Controls whether an x-axis is plotted below the plot at the bottom. The default
value is TRUE.

xlab An optional label for the x-axis. If set to NA, no label is drawn.

xtlab Optional labels for the x-axis tick labels. If unspecified, the column names of
the seqdata sequence object are used (see seqdef).

xlab.pos Controls the position of the x-axis label. The default value is 1. Values greater
than 1 will place the label further away from the plot.

ylab Labels for the channels shown as labels for y-axes. A vector of names for each
channel (observations). The default value "auto" uses the names provided in
x$channel_names if x is an hmm object; otherwise the names of the list in x if
given, or the number of the channel if names are not given. FALSE prints no
labels.

hidden.states.title

Optional label for the hidden state plot (in the y-axis). The default is "Hidden
states".

yaxis Controls whether or not to plot the y-axis. The default is FALSE.

ylab.pos Controls the position of the y axis labels (labels for channels and/or hidden
states). Either "auto" or a numerical vector indicating how far away from the
plots the titles are positioned. The default value "auto" positions all titles on
line 1. Shorter vectors are recycled.

cex.lab Expansion factor for setting the size of the font for the axis labels. The default
value is 1. Values lesser than 1 will reduce the size of the font, values greater
than 1 will increase the size.

cex.axis Expansion factor for setting the size of the font for the x-axis tick labels. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

respect_void If TRUE (default), states at the time points corresponding to TraMineR’s void in
the observed sequences are set to void in the hidden state sequences as well.

... Other arguments to be passed on to seqplot.

58 plot.hmm

See Also

build_mhmm and fit_model for building and fitting mixture hidden Markov models, hidden_paths
for computing the most probable paths (Viterbi paths) of hidden states, plot.mhmm for plotting mhmm
objects as directed graphs, and colorpalette for default colors.

Examples

Loading mixture hidden Markov model (mhmm object)
of the biofam data
data("mhmm_biofam")

Plotting the first cluster only
mssplot(mhmm_biofam, which.plots = 1)

if (interactive()) {
Interactive plot
mssplot(mhmm_biofam)

}

plot.hmm Plot hidden Markov models

Description

Function plot.hmm plots a directed graph with pie charts of emission probabilities as vertices/nodes.

Usage

S3 method for class 'hmm'
plot(
x,
layout = "horizontal",
pie = TRUE,
vertex.size = 40,
vertex.label = "initial.probs",
vertex.label.dist = "auto",
vertex.label.pos = "bottom",
vertex.label.family = "sans",
loops = FALSE,
edge.curved = TRUE,
edge.label = "auto",
edge.width = "auto",
cex.edge.width = 1,
edge.arrow.size = 1.5,
edge.label.family = "sans",
label.signif = 2,
label.scientific = FALSE,

plot.hmm 59

label.max.length = 6,
trim = 1e-15,
combine.slices = 0.05,
combined.slice.color = "white",
combined.slice.label = "others",
with.legend = "bottom",
ltext = NULL,
legend.prop = 0.5,
cex.legend = 1,
ncol.legend = "auto",
cpal = "auto",
cpal.legend = "auto",
legend.order = TRUE,
main = NULL,
withlegend,
...

)

Arguments

x A hidden Markov model object of class hmm created with build_hmm (or build_mm).
Multichannel hmm objects are automatically transformed into single-channel ob-
jects. See function mc_to_sc for more information on the transformation.

layout specifies the layout of vertices (nodes). Accepts a numerical matrix, a layout_
function (without quotation marks), or either of the predefined options "horizontal"
(the default) and "vertical". Options "horizontal" and "vertical" posi-
tion vertices at the same horizontal or vertical line. A two-column numerical
matrix can be used to give x and y coordinates of the vertices. The layout_
functions available in the igraph package offer other automatic layouts for
graphs.

pie Are vertices plotted as pie charts of emission probabilities? Defaults to TRUE.

vertex.size Size of vertices, given as a scalar or numerical vector. The default value is 40.

vertex.label Labels for vertices. Possible options include "initial.probs", "names", NA,
and a character or numerical vector. The default "initial.probs" prints the
initial probabilities of the model and "names" prints the names of the hidden
states as labels. NA prints no labels.

vertex.label.dist

Distance of the label of the vertex from its center. The default value "auto"
places the label outside the vertex.

vertex.label.pos

Positions of vertex labels, relative to the center of the vertex. A scalar or numer-
ical vector giving position(s) as radians or one of "bottom" (pi/2 as radians),
"top" (-pi/2), "left" (pi), or "right" (0).

vertex.label.family, edge.label.family
Font family to be used for vertex/edge labels. See argument family in par for
more information.

loops Defines whether transitions back to same states are plotted.

60 plot.hmm

edge.curved Defines whether to plot curved edges (arcs, arrows) between vertices. A logical
or numerical vector or scalar. Numerical values specify curvatures of edges. The
default value TRUE gives curvature of 0.5 to all edges. See igraph.plotting
for more information.

edge.label Labels for edges. Possible options include "auto", NA, and a character or nu-
merical vector. The default "auto" prints transition probabilities as edge labels.
NA prints no labels.

edge.width Width(s) for edges. The default "auto" determines widths according to tran-
sition probabilities between hidden states. Other possibilities are a scalar or a
numerical vector of widths.

cex.edge.width An expansion factor for edge widths. Defaults to 1.
edge.arrow.size

Size of the arrow in edges (constant). Defaults to 1.5.

label.signif Rounds labels of model parameters to specified number of significant digits, 2
by default. Ignored for user-given labels.

label.scientific

Defines if scientific notation should be used to describe small numbers. Defaults
to FALSE, e.g. 0.0001 instead of 1e-04. Ignored for user-given labels.

label.max.length

Maximum number of digits in labels of model parameters. Ignored for user-
given labels.

trim Scalar between 0 and 1 giving the highest probability of transitions that are
plotted as edges, defaults to 1e-15.

combine.slices Scalar between 0 and 1 giving the highest probability of emission probabilities
that are combined into one state. The dafault value is 0.05.

combined.slice.color

Color of the combined slice that includes the smallest emission probabilities
(only if argument "combine.slices" is greater than 0). The default color is
white.

combined.slice.label

The label for combined states (when argument "combine.slices" is greater
than 0) to appear in the legend.

with.legend Defines if and where the legend of state colors is plotted. Possible values include
"bottom" (the default), "top", "left", and "right". FALSE omits the legend.

ltext Optional description of (combined) observed states to appear in the legend. A
vector of character strings. See seqplot for more information.

legend.prop Proportion used for plotting the legend. A scalar between 0 and 1, defaults to
0.5.

cex.legend Expansion factor for setting the size of the font for labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

ncol.legend The number of columns for the legend. The default value "auto" sets the num-
ber of columns automatically.

plot.hmm 61

cpal Optional color palette for (combinations of) observed states. The default value
"auto" uses automatic color palette. Otherwise a vector of length x$n_symbols
is given, i.e. the argument requires a color specified for all (combinations of) ob-
served states even if they are not plotted (if the probability is less than combine.slices).

cpal.legend Optional color palette for the legend, only considered when legend.order is
FALSE. Should match ltext.

legend.order Whether to use the default order in the legend, i.e., order by appearance (first by
hidden state, then by emission probability). TRUE by default.

main Main title for the plot. Omitted by default.

withlegend Deprecated. Use with.legend instead.

... Other parameters passed on to plot.igraph such as vertex.color, vertex.label.cex,
or edge.lty.

See Also

build_hmm and fit_model for building and fitting Hidden Markov models, mc_to_sc for trans-
forming multistate hmm objects into single-channel objects, hmm_biofam and hmm_mvad for infor-
mation on the models used in the examples, and plot.igraph for the general plotting function of
directed graphs.

Examples

Multichannel data, left-to-right model

Loading a HMM of the biofam data
data("hmm_biofam")

Plotting hmm object
plot(hmm_biofam)

Plotting HMM with
plot(hmm_biofam,

varying curvature of edges
edge.curved = c(0, -0.7, 0.6, 0.7, 0, -0.7, 0),
legend with two columns and less space
ncol.legend = 2, legend.prop = 0.4,
new label for combined slice
combined.slice.label = "States with probability < 0.05"

)

Plotting HMM with given coordinates
plot(hmm_biofam,

layout given in 2x5 matrix
x coordinates in the first column
y coordinates in the second column
layout = matrix(c(
1, 3, 3, 5, 3,
0, 0, 1, 0, -1

), ncol = 2),
larger vertices

62 plot.hmm

vertex.size = 50,
straight edges
edge.curved = FALSE,
thinner edges and arrows
cex.edge.width = 0.5, edge.arrow.size = 1,
varying positions for vertex labels (initial probabilities)
vertex.label.pos = c(pi, pi / 2, -pi / 2, 0, pi / 2),
different legend properties
with.legend = "top", legend.prop = 0.3, cex.legend = 1.1,
Fix axes to the right scale
xlim = c(0.5, 5.5), ylim = c(-1.5, 1.5), rescale = FALSE,
all states (not combining states with small probabilities)
combine.slices = 0,
legend with two columns
ncol.legend = 2

)

Plotting HMM with own color palette
plot(hmm_biofam,

cpal = 1:10,
States with emission probability less than 0.2 removed
combine.slices = 0.2,
legend with two columns
ncol.legend = 2

)

Plotting HMM without pie graph and with a layout function
require("igraph")
Setting the seed for a random layout
set.seed(1234)
plot(hmm_biofam,

Without pie graph
pie = FALSE,
Using an automatic layout function from igraph
layout = layout_nicely,
vertex.size = 30,
Straight edges and probabilities of moving to the same state
edge.curved = FALSE, loops = TRUE,
Labels with three significant digits
label.signif = 3,
Fixed edge width
edge.width = 1,
Remove edges with probability less than 0.01
trim = 0.01,
Hidden state names as vertex labels
vertex.label = "names",
Labels insidde vertices
vertex.label.dist = 0,
Fix x-axis (more space on the right-hand side)
xlim = c(-1, 1.3)

)

plot.mhmm 63

Single-channel data, unrestricted model

Loading a hidden Markov model of the mvad data (hmm object)
data("hmm_mvad")

Plotting the HMM
plot(hmm_mvad)

Checking the order of observed states (needed for the next call)
require(TraMineR)
alphabet(hmm_mvad$observations)

Plotting the HMM with own legend (note: observation "none" nonexistent in the observations)
plot(hmm_mvad,

Override the default order in the legend
legend.order = FALSE,
Colours in the pies (ordered by the alphabet of observations)
cpal = c("purple", "pink", "brown", "lightblue", "orange", "green"),
Colours in the legend (matching to ltext)
cpal.legend = c("orange", "pink", "brown", "green", "lightblue", "purple", "gray"),
Labels in the legend (matching to cpal.legend)
ltext = c("school", "further educ", "higher educ", "training", "jobless", "employed", "none")

)

require("igraph")
plot(hmm_mvad,

Layout in circle (layout function from igraph)
layout = layout_in_circle,
Less curved edges with smaller arrows, no labels
edge.curved = 0.2, edge.arrow.size = 0.9, edge.label = NA,
Positioning vertex labels (initial probabilities)
vertex.label.pos = c("right", "right", "left", "left", "right"),
Less space for the legend
legend.prop = 0.3

)

plot.mhmm Interactive Plotting for Mixed Hidden Markov Model (mhmm)

Description

Function plot.mhmm plots a directed graph of the parameters of each model with pie charts of
emission probabilities as vertices/nodes.

Usage

S3 method for class 'mhmm'
plot(
x,
interactive = TRUE,

64 plot.mhmm

ask = FALSE,
which.plots = NULL,
nrow = NA,
ncol = NA,
byrow = FALSE,
row.prop = "auto",
col.prop = "auto",
layout = "horizontal",
pie = TRUE,
vertex.size = 40,
vertex.label = "initial.probs",
vertex.label.dist = "auto",
vertex.label.pos = "bottom",
vertex.label.family = "sans",
loops = FALSE,
edge.curved = TRUE,
edge.label = "auto",
edge.width = "auto",
cex.edge.width = 1,
edge.arrow.size = 1.5,
edge.label.family = "sans",
label.signif = 2,
label.scientific = FALSE,
label.max.length = 6,
trim = 1e-15,
combine.slices = 0.05,
combined.slice.color = "white",
combined.slice.label = "others",
with.legend = "bottom",
ltext = NULL,
legend.prop = 0.5,
cex.legend = 1,
ncol.legend = "auto",
cpal = "auto",
main = "auto",
withlegend,
...

)

Arguments

x A hidden Markov model object of class mhmm created with build_mhmm (or
build_mmm or build_lcm). Multichannel mhmm objects are automatically trans-
formed into single-channel objects. See function mc_to_sc for more informa-
tion on the transformation.

interactive Whether to plot each cluster in succession or in a grid. Defaults to TRUE, i.e.
clusters are plotted one after another.

ask If TRUE and which.plots is NULL, plot.mhmm operates in interactive mode,

plot.mhmm 65

via menu. Defaults to FALSE. Ignored if interactive = FALSE.

which.plots The number(s) of the requested cluster(s) as an integer vector. The default NULL
produces all plots.

nrow, ncol Optional arguments to arrange plots in a grid. Ignored if interactive = TRUE.

byrow Controls the order of plotting in a grid. Defaults to FALSE, i.e. plots are arranged
column-wise. Ignored if interactive = TRUE.

row.prop Sets the proportions of the row heights of the grid. The default value is "auto"
for even row heights. Takes a vector of values from 0 to 1, with values summing
to 1. Ignored if interactive = TRUE.

col.prop Sets the proportion of the column heights of the grid. The default value is
"auto" for even column widths. Takes a vector of values from 0 to 1, with
values summing to 1. Ignored if interactive = TRUE.

layout specifies the layout of vertices (nodes). Accepts a numerical matrix, a layout_
function (without quotation marks), or either of the predefined options "horizontal"
(the default) and "vertical". Options "horizontal" and "vertical" posi-
tion vertices at the same horizontal or vertical line. A two-column numerical
matrix can be used to give x and y coordinates of the vertices. The layout_
functions available in the igraph package offer other automatic layouts for
graphs.

pie Are vertices plotted as pie charts of emission probabilities? Defaults to TRUE.

vertex.size Size of vertices, given as a scalar or numerical vector. The default value is 40.

vertex.label Labels for vertices. Possible options include "initial.probs", "names", NA,
and a character or numerical vector. The default "initial.probs" prints the
initial probabilities of the model and "names" prints the names of the hidden
states as labels. NA prints no labels.

vertex.label.dist

Distance of the label of the vertex from its center. The default value "auto"
places the label outside the vertex.

vertex.label.pos

Positions of vertex labels, relative to the center of the vertex. A scalar or numer-
ical vector giving position(s) as radians or one of "bottom" (pi/2 as radians),
"top" (-pi/2), "left" (pi), or "right" (0).

vertex.label.family, edge.label.family
Font family to be used for vertex/edge labels. See argument family in par for
more information.

loops Defines whether transitions back to same states are plotted.

edge.curved Defines whether to plot curved edges (arcs, arrows) between vertices. A logical
or numerical vector or scalar. Numerical values specify curvatures of edges. The
default value TRUE gives curvature of 0.5 to all edges. See igraph.plotting
for more information.

edge.label Labels for edges. Possible options include "auto", NA, and a character or nu-
merical vector. The default "auto" prints transition probabilities as edge labels.
NA prints no labels.

66 plot.mhmm

edge.width Width(s) for edges. The default "auto" determines widths according to tran-
sition probabilities between hidden states. Other possibilities are a scalar or a
numerical vector of widths.

cex.edge.width An expansion factor for edge widths. Defaults to 1.
edge.arrow.size

Size of the arrow in edges (constant). Defaults to 1.5.

label.signif Rounds labels of model parameters to specified number of significant digits, 2
by default. Ignored for user-given labels.

label.scientific

Defines if scientific notation should be used to describe small numbers. Defaults
to FALSE, e.g. 0.0001 instead of 1e-04. Ignored for user-given labels.

label.max.length

Maximum number of digits in labels of model parameters. Ignored for user-
given labels.

trim Scalar between 0 and 1 giving the highest probability of transitions that are
plotted as edges, defaults to 1e-15.

combine.slices Scalar between 0 and 1 giving the highest probability of emission probabilities
that are combined into one state. The dafault value is 0.05.

combined.slice.color

Color of the combined slice that includes the smallest emission probabilities
(only if argument "combine.slices" is greater than 0). The default color is
white.

combined.slice.label

The label for combined states (when argument "combine.slices" is greater
than 0) to appear in the legend.

with.legend Defines if and where the legend of state colors is plotted. Possible values include
"bottom" (the default), "top", "left", and "right". FALSE omits the legend.

ltext Optional description of (combined) observed states to appear in the legend. A
vector of character strings. See seqplot for more information.

legend.prop Proportion used for plotting the legend. A scalar between 0 and 1, defaults to
0.5.

cex.legend Expansion factor for setting the size of the font for labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

ncol.legend The number of columns for the legend. The default value "auto" sets the num-
ber of columns automatically.

cpal Optional color palette for (combinations of) observed states. The default value
"auto" uses automatic color palette. Otherwise a vector of length x$n_symbols
is given, i.e. the argument requires a color specified for all (combinations of) ob-
served states even if they are not plotted (if the probability is less than combine.slices).

main Optional main titles for plots. The default "auto" uses cluster_names as titles,
NULL prints no titles.

withlegend Deprecated. Use with.legend instead.

... Other parameters passed on to plot.igraph such as vertex.color, vertex.label.cex,
or edge.lty.

plot.ssp 67

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

build_mhmm and fit_model for building and fitting mixture hidden Markov models; plot.igraph
for plotting directed graphs; and mhmm_biofam and mhmm_mvad for the models used in examples.

Examples

Loading mixture hidden Markov model (mhmm object)
of the biofam data
data("mhmm_biofam")

Plotting only the first cluster
plot(mhmm_biofam, which.plots = 1)

if (interactive()) {
Plotting each cluster (change with Enter)
plot(mhmm_biofam)

Choosing the cluster (one at a time)
plot(mhmm_biofam, ask = TRUE)

Loading MHMM of the mvad data
data("mhmm_mvad")

Plotting models in the same graph (in a grid)
Note: the plotting window must be high enough!
set.seed(123)
plot(mhmm_mvad,
interactive = FALSE,
automatic layout, legend on the right-hand side
layout = layout_nicely, with.legend = "right",
Smaller and less curved edges
edge.curved = 0.2, cex.edge.width = 0.5, edge.arrow.size = 0.7,
vertex.label.pos = -4 * pi / 5, vertex.label.dist = 5

)
}

plot.ssp Stack Multichannel Sequence Plots and/or Most Probable Paths Plots
from Hidden Markov Models

Description

Function plot.ssp plots stacked sequence plots from ssp objects defined with ssp.

68 plot_colors

Usage

S3 method for class 'ssp'
plot(x, ...)

Arguments

x An ssp object.

... Ignored.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

ssp for more examples and information on defining the plot before using plot.ssp; ssplot for
straight plotting of ssp objects; and gridplot for plotting multiple ssp objects.

Examples

data("biofam3c")

Building sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

Plotting state distribution plots of observations
ssp1 <- ssp(list(child_seq, marr_seq, left_seq))
plot(ssp1)

plot_colors Plot Colorpalettes

Description

Function plot_colors plots colors and their labels for easy visualization of a colorpalette.

Usage

plot_colors(x, labels = NULL)

posterior_probs 69

Arguments

x A vector of colors.

labels A vector of labels for colors. If omitted, given color names are used.

See Also

See e.g. the colorpalette data and RColorBrewer package for ready-made color palettes.

Examples

plot_colors(colorpalette[[5]], labels = c("one", "two", "three", "four", "five"))

plot_colors(colorpalette[[10]])

plot_colors(1:7)

plot_colors(c("yellow", "orange", "red", "purple", "blue", "green"))

plot_colors(rainbow(15))

posterior_probs Posterior Probabilities for (Mixture) Hidden Markov Models

Description

Function posterior_probs computes the posterior probabilities of hidden states of a (mixture)
hidden Markov model.

Usage

posterior_probs(model, log_space = FALSE)

Arguments

model A (mixture) hidden Markov model of class hmm or mhmm.

log_space Compute posterior probabilities in logarithmic scale. The default is FALSE.

Value

Posterior probabilities. In case of multiple observations, these are computed independentlsy for
each sequence.

70 print.hmm

Examples

Load a pre-defined MHMM
data("mhmm_biofam")

Compute posterior probabilities
pb <- posterior_probs(mhmm_biofam)

Locally most probable states for the first subject:
pb[, , 1]

print.hmm Print Method for a Hidden Markov Model

Description

Prints the parameters of a (mixture) hidden Markov model.

Usage

S3 method for class 'hmm'
print(x, digits = 3, ...)

S3 method for class 'mhmm'
print(x, digits = 3, ...)

S3 method for class 'summary.mhmm'
print(x, digits = 3, ...)

Arguments

x Hidden Markov model of class hmm or mhmm.

digits Minimum number of significant digits to print.

... Further arguments to print.default.

See Also

build_hmm and fit_model for building and fitting hidden Markov models.

separate_mhmm 71

separate_mhmm Reorganize a mixture hidden Markov model to a list of separate hidden
Markov models (covariates ignored)

Description

The separate_mhmm function reorganizes the parameters of a mhmm object into a list where each list
component is an object of class hmm consisting of the parameters of the corresponding cluster.

Usage

separate_mhmm(model)

Arguments

model Mixture hidden Markov model of class mhmm.

Value

List with components of class hmm.

See Also

build_mhmm and fit_model for building and fitting MHMMs; and mhmm_biofam for more infor-
mation on the model used in examples.

Examples

Loading mixture hidden Markov model (mhmm object)
of the biofam data
data("mhmm_biofam")

Separate models for clusters
sep_hmm <- separate_mhmm(mhmm_biofam)

Plotting the model for the first cluster
plot(sep_hmm[[1]])

seqdef Imported Functions from TraMineR

Description

Imported functions for convinience. For details, see the corresponding help pages of seqstatf,
alphabet and seqdef.

72 seqHMM-deprecated

seqHMM The seqHMM package

Description

The seqHMM package is designed for fitting hidden (or latent) Markov models (HMMs) and mix-
ture hidden Markov models (MHMMs) for social sequence data and other categorical time series.
The package supports models for one or multiple subjects with one or multiple interdependent se-
quences (channels). External covariates can be added to explain cluster membership in mixture
models. The package provides functions for evaluating and comparing models, as well as functions
for easy plotting of multichannel sequences and hidden Markov models. Common restricted ver-
sions of (M)HMMs are also supported, namely Markov models, mixture Markov models, and latent
class models.

Details

Maximum likelihood estimation via the EM algorithm and direct numerical maximization with
analytical gradients is supported. All main algorithms are written in C++. Parallel computation is
implemented via OpenMP.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

seqHMM-deprecated Deprecated function(s) in the seqHMM package

Description

These functions are provided for compatibility with older version of the seqHMM package. They
will be eventually completely removed.

Usage

fit_hmm(
model,
em_step = TRUE,
global_step = FALSE,
local_step = FALSE,
control_em = list(),
control_global = list(),
control_local = list(),
lb,
ub,

seqHMM-deprecated 73

threads = 1,
log_space = FALSE,
...

)

fit_mhmm(
model,
em_step = TRUE,
global_step = FALSE,
local_step = FALSE,
control_em = list(),
control_global = list(),
control_local = list(),
lb,
ub,
threads = 1,
log_space = FALSE,
...

)

trim_hmm(
model,
maxit = 0,
return_loglik = FALSE,
zerotol = 1e-08,
verbose = TRUE,
...

)

Arguments

model An object of class hmm or mhmm.

em_step Logical. Whether or not to use the EM algorithm at the start of the parameter
estimation. The default is TRUE.

global_step Logical. Whether or not to use global optimization via nloptr (possibly after
the EM step). The default is FALSE.

local_step Logical. Whether or not to use local optimization via nloptr (possibly after the
EM and/or global steps). The default is FALSE.

control_em Optional list of control parameters for the EM algorithm. Possible arguments
are

maxeval The maximum number of iterations, the default is 1000. Note that
iteration counter starts with -1 so with maxeval=1 you get already two iter-
ations. This is for backward compatibility reasons.

print_level The level of printing. Possible values are 0 (prints nothing), 1
(prints information at the start and the end of the algorithm), 2 (prints at
every iteration), and for mixture models 3 (print also during optimization
of coefficients).

74 seqHMM-deprecated

reltol Relative tolerance for convergence defined as (logLiknew−logLikold)/(abs(logLikold)+
0.1). The default is 1e-10.

restart A list containing options for possible EM restarts with the following
components:
times Number of restarts of the EM algorithm using random initial values.

The default is 0, i.e. no restarts.
transition Logical. Should the original transition probabilities be varied?

The default is TRUE.
emission Logical. Should the original emission probabilities be varied?

The default is TRUE.
sd Standard deviation for rnorm used in randomization. The default is

0.25.
maxeval Maximum number of iterations, the default is control_em$maxeval
print_level Level of printing in restarted EM steps. The default is control_em$print_level.
reltol Relative tolerance for convergence at restarted EM steps. The default

is control_em$reltol. If the relative change of the final model of the
restart phase is larger than the tolerance for the original EM phase, the
final model is re-estimated with the original reltol and maxeval at the
end of the EM step.

n_optimum Save the log-likelihood values of the n_optimum best models
(from all estimated models including the the first EM run.). The default
is min(times + 1, 25).

use_original If TRUE. Use the initial values of the input model as starting
points for the permutations. Otherwise permute the results of the first
EM run.

control_global Optional list of additional arguments for nloptr argument opts. The default
values are

algorithm "NLOPT_GD_MLSL_LDS"

local_opts list(algorithm = "NLOPT_LD_LBFGS", ftol_rel = 1e-6, xtol_rel
= 1e-4)

maxeval 10000 (maximum number of iterations in global optimization algo-
rithm.)

maxtime 60 (maximum time for global optimization. Set to 0 for unlimited
time.)

control_local Optional list of additional arguments for nloptr argument opts. The default
values are

algorithm "NLOPT_LD_LBFGS"

ftol_rel 1e-10

xtol_rel 1e-8

maxeval 10000 (maximum number of iterations)

lb, ub Lower and upper bounds for parameters in Softmax parameterization. The de-
fault interval is [pmin(−25, 2 ∗ initialvalues), pmax(25, 2 ∗ initialvalues)],
except for gamma coefficients, where the scale of covariates is taken into ac-
count. Note that it might still be a good idea to scale covariates around unit
scale. Bounds are used only in the global optimization step.

simulate_hmm 75

threads Number of threads to use in parallel computing. The default is 1.

log_space Make computations using log-space instead of scaling for greater numerical sta-
bility at a cost of decreased computational performance. The default is FALSE.

... Additional arguments to nloptr.

maxit Number of iterations. After zeroing small values, the model is refitted, and this
is repeated until there is nothing to trim or maxit iterations are done.

return_loglik Return the log-likelihood of the trimmed model together with the model object.
The default is FALSE.

zerotol Values smaller than this are trimmed to zero.

verbose Print results of trimming. The default is TRUE.

simulate_hmm Simulate hidden Markov models

Description

Simulate sequences of observed and hidden states given parameters of a hidden Markov model.

Usage

simulate_hmm(
n_sequences,
initial_probs,
transition_probs,
emission_probs,
sequence_length

)

Arguments

n_sequences Number of simulations.

initial_probs A vector of initial state probabilities.
transition_probs

A matrix of transition probabilities.

emission_probs A matrix of emission probabilities or a list of such objects (one for each chan-
nel).

sequence_length

Length for simulated sequences.

Value

A list of state sequence objects of class stslist.

76 simulate_initial_probs

See Also

build_hmm and fit_model for building and fitting hidden Markov models; ssplot for plotting mul-
tiple sequence data sets; seqdef for more information on state sequence objects; and simulate_mhmm
for simulating mixture hidden Markov models.

Examples

Parameters for the HMM
emission_probs <- matrix(c(0.5, 0.2, 0.5, 0.8), 2, 2)
transition_probs <- matrix(c(5 / 6, 1 / 6, 1 / 6, 5 / 6), 2, 2)
initial_probs <- c(1, 0)

Setting the seed for simulation
set.seed(1)

Simulating sequences
sim <- simulate_hmm(

n_sequences = 10, initial_probs = initial_probs,
transition_probs = transition_probs,
emission_probs = emission_probs,
sequence_length = 20

)

ssplot(sim, sortv = "mds.obs", type = "I")

simulate_initial_probs

Simulate Parameters of Hidden Markov Models

Description

These are helper functions for quick construction of initial values for various model building func-
tions. Mostly useful for global optimization algorithms which do not depend on initial values.

Usage

simulate_initial_probs(n_states, n_clusters = 1)

simulate_transition_probs(
n_states,
n_clusters = 1,
left_right = FALSE,
diag_c = 0

)

simulate_emission_probs(n_states, n_symbols, n_clusters = 1)

simulate_mhmm 77

Arguments

n_states Number of states in each cluster.

n_clusters Number of clusters.

left_right Constrain the transition probabilities to upper triangular. Default is FALSE.

diag_c A constant value to be added to diagonal of transition matrices before scaling.

n_symbols Number of distinct symbols in each channel.

See Also

build_hmm, build_mhmm, build_mm, build_mmm, and build_lcm for constructing different types
of models.

simulate_mhmm Simulate Mixture Hidden Markov Models

Description

Simulate sequences of observed and hidden states given the parameters of a mixture hidden Markov
model.

Usage

simulate_mhmm(
n_sequences,
initial_probs,
transition_probs,
emission_probs,
sequence_length,
formula,
data,
coefficients

)

Arguments

n_sequences The number of simulations.

initial_probs A list containing vectors of initial state probabilities for the submodel of each
cluster.

transition_probs

A list of matrices of transition probabilities for the submodel of each cluster.

emission_probs A list which contains matrices of emission probabilities or a list of such objects
(one for each channel) for the submodel of each cluster. Note that the matrices
must have dimensions sxm where s is the number of hidden states and m is the
number of unique symbols (observed states) in the data.

78 simulate_mhmm

sequence_length

The length of the simulated sequences.

formula Covariates as an object of class formula, left side omitted.

data An optional data frame, a list or an environment containing the variables in the
model. If not found in data, the variables are taken from environment(formula).

coefficients An optional kxl matrix of regression coefficients for time-constant covariates
for mixture probabilities, where l is the number of clusters and k is the number
of covariates. A logit-link is used for mixture probabilities. The first column is
set to zero.

Value

A list of state sequence objects of class stslist.

See Also

build_mhmm and fit_model for building and fitting mixture hidden Markov models; ssplot for
plotting multiple sequence data sets; seqdef for more information on state sequence objects; and
simulate_hmm for simulating hidden Markov models.

Examples

emission_probs_1 <- matrix(c(0.75, 0.05, 0.25, 0.95), 2, 2)
emission_probs_2 <- matrix(c(0.1, 0.8, 0.9, 0.2), 2, 2)
colnames(emission_probs_1) <- colnames(emission_probs_2) <-

c("heads", "tails")

transition_probs_1 <- matrix(c(9, 0.1, 1, 9.9) / 10, 2, 2)
transition_probs_2 <- matrix(c(35, 1, 1, 35) / 36, 2, 2)
rownames(emission_probs_1) <- rownames(transition_probs_1) <-

colnames(transition_probs_1) <- c("coin 1", "coin 2")
rownames(emission_probs_2) <- rownames(transition_probs_2) <-

colnames(transition_probs_2) <- c("coin 3", "coin 4")

initial_probs_1 <- c(1, 0)
initial_probs_2 <- c(1, 0)

n <- 30
set.seed(123)
covariate_1 <- runif(n)
covariate_2 <- sample(c("A", "B"),

size = n, replace = TRUE,
prob = c(0.3, 0.7)

)
dataf <- data.frame(covariate_1, covariate_2)

coefs <- cbind(cluster_1 = c(0, 0, 0), cluster_2 = c(-1.5, 3, -0.7))
rownames(coefs) <- c("(Intercept)", "covariate_1", "covariate_2B")

sim <- simulate_mhmm(
n = n, initial_probs = list(initial_probs_1, initial_probs_2),

ssp 79

transition_probs = list(transition_probs_1, transition_probs_2),
emission_probs = list(emission_probs_1, emission_probs_2),
sequence_length = 20, formula = ~ covariate_1 + covariate_2,
data = dataf, coefficients = coefs

)

ssplot(sim$observations,
hidden.paths = sim$states, plots = "both",
sortv = "from.start", sort.channel = 0, type = "I"

)

hmm <- build_mhmm(sim$observations,
initial_probs = list(initial_probs_1, initial_probs_2),
transition_probs = list(transition_probs_1, transition_probs_2),
emission_probs = list(emission_probs_1, emission_probs_2),
formula = ~ covariate_1 + covariate_2,
data = dataf

)

fit <- fit_model(hmm)
fit$model

paths <- hidden_paths(fit$model)

ssplot(list(estimates = paths, true = sim$states),
sortv = "from.start",
sort.channel = 2, ylab = c("estimated paths", "true (simulated)"),
type = "I"

)

ssp Define Arguments for Plotting Multichannel Sequences and/or Most
Probable Paths from Hidden Markov Models

Description

Function ssp defines the arguments for plotting with plot.ssp or gridplot.

Usage

ssp(
x,
hidden.paths = NULL,
plots = "obs",
type = "d",
tlim = 0,
sortv = NULL,
sort.channel = 1,

80 ssp

dist.method = "OM",
with.missing = FALSE,
missing.color = NULL,
title = NA,
title.n = TRUE,
cex.title = 1,
title.pos = 1,
with.legend = "auto",
ncol.legend = "auto",
with.missing.legend = "auto",
legend.prop = 0.3,
cex.legend = 1,
hidden.states.colors = "auto",
hidden.states.labels = "auto",
xaxis = TRUE,
xlab = NA,
xtlab = NULL,
xlab.pos = 1,
ylab = "auto",
hidden.states.title = "Hidden states",
yaxis = FALSE,
ylab.pos = "auto",
cex.lab = 1,
cex.axis = 1,
withlegend,
respect_void = TRUE,
...

)

Arguments

x Either a hidden Markov model object of class hmm or a state sequence object
of class stslist (created with the seqdef) function) or a list of state sequence
objects.

hidden.paths Output from hidden_paths function. Optional, if x is a hmm object or if type =
"obs".

plots What to plot. One of "obs" for observations (the default), "hidden.paths" for
most probable paths of hidden states, or "both" for observations and hidden
paths together.

type The type of the plot. Available types are "I" for sequence index plots and "d"
for state distribution plots (the default). See seqplot for details.

tlim Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted).
For example, tlim = 1:10 plots the first ten subjects in data.

sortv A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs",
or "mds.hidden") for type = "I". The value "mds.hidden" is only available
when hidden paths are available. Options "mds.obs" and "mds.hidden" au-
tomatically arrange the sequences according to the scores of multidimensional

ssp 81

scaling (using cmdscale) for the observed data or hidden states paths. MDS
scores are computed from distances/dissimilarities using a metric defined in ar-
gument dist.method. See plot.stslist for more details on "from.start"
and "from.end".

sort.channel The number of the channel according to which the "from.start" or "from.end"
sorting is done. Sorting according to hidden states is called with value 0. The
default value is 1 (the first channel).

dist.method The metric to be used for computing the distances of the sequences if multi-
dimensional scaling is used for sorting. One of "OM" (optimal matching, the
default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest
common suffix), "LCS" (longest common subsequence), "HAM" (Hamming
distance), and "DHD" (dynamic Hamming distance). Transition rates are used
for defining substitution costs if needed. See seqdef for more information on
the metrics.

with.missing Controls whether missing states are included in state distribution plots (type =
"d"). The default is FALSE.

missing.color Alternative color for representing missing values in the sequences. By default,
this color is taken from the missing.color attribute of the sequence object.

title Main title for the graphic. The default is NA: if title.n = TRUE, only the number
of subjects is plotted. FALSE prints no title, even when title.n = TRUE.

title.n Controls whether the number of subjects (in the first channel) is printed in the
title of the plot. The default is TRUE: n is plotted if title is anything but FALSE.

cex.title Expansion factor for setting the size of the font for the title. The default value is
1. Values lesser than 1 will reduce the size of the font, values greater than 1 will
increase the size.

title.pos Controls the position of the main title of the plot. The default value is 1. Values
greater than 1 will place the title higher.

with.legend Defines if and where the legend for the states is plotted. The default value
"auto" (equivalent to TRUE and "right") creates separate legends for each
requested plot and positiones them on the right-hand side of the plot. Other
possible values are "bottom", "right.combined", and "bottom.combined",
of which the last two create a combined legend in the selected position. FALSE
prints no legend.

ncol.legend (A vector of) the number of columns for the legend(s). The default "auto"
determines number of columns depending on the position of the legend.

with.missing.legend

If set to "auto" (the default), a legend for the missing state is added automati-
cally if one or more of the sequences in the data/channel contains missing states
and type = "I". If type = "d" missing states are omitted from the legends un-
less with.missing = TRUE. With the value TRUE a legend for the missing state
is added in any case; equivalently FALSE omits the legend for the missing state.

legend.prop Sets the proportion of the graphic area used for plotting the legend when with.legend
is not FALSE. The default value is 0.3. Takes values from 0 to 1.

cex.legend Expansion factor for setting the size of the font for the labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

82 ssp

hidden.states.colors

A vector of colors assigned to hidden states. The default value "auto" uses the
colors assigned to the stslist object (created with seqdef) if hidden.paths
is given; otherwise colors from colorpalette are automatically used.

hidden.states.labels

Labels for the hidden states. The default value "auto" uses the names provided
in x$state_names if x is an hmm object; otherwise the number of the hidden
state.

xaxis Controls whether an x-axis is plotted below the plot at the bottom. The default
value is TRUE.

xlab An optional label for the x-axis. If set to NA, no label is drawn.

xtlab Optional labels for the x-axis tick labels. If unspecified, the column names of
the seqdata sequence object are used (see seqdef).

xlab.pos Controls the position of the x-axis label. The default value is 1. Values greater
than 1 will place the label further away from the plot.

ylab Labels for the channels shown as labels for y-axes. A vector of names for each
channel (observations). The default value "auto" uses the names provided in
x$channel_names if x is an hmm object; otherwise the names of the list in x if
given, or the number of the channel if names are not given. FALSE prints no
labels.

hidden.states.title

Optional label for the hidden state plot (in the y-axis). The default is "Hidden
states".

yaxis Controls whether or not to plot the y-axis. The default is FALSE.

ylab.pos Controls the position of the y axis labels (labels for channels and/or hidden
states). Either "auto" or a numerical vector indicating how far away from the
plots the titles are positioned. The default value "auto" positions all titles on
line 1. Shorter vectors are recycled.

cex.lab Expansion factor for setting the size of the font for the axis labels. The default
value is 1. Values lesser than 1 will reduce the size of the font, values greater
than 1 will increase the size.

cex.axis Expansion factor for setting the size of the font for the x-axis tick labels. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

withlegend Deprecated. Use with.legend instead.

respect_void If TRUE (default), states at the time points corresponding to TraMineR’s void in
the observed sequences are set to void in the hidden state sequences as well.

... Other arguments to be passed on to seqplot.

Value

Object of class ssp.

ssp 83

See Also

plot.ssp for plotting objects created with the ssp function; gridplot for plotting multiple ssp
objects; build_hmm and fit_model for building and fitting hidden Markov models; hidden_paths
for computing the most probable paths of hidden states; and biofam3c and hmm_biofam for infor-
mation on the data and model used in the example.

Examples

data("biofam3c")

Building sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

Defining the plot for state distribution plots of observations
ssp1 <- ssp(list(

"Parenthood" = child_seq, "Marriage" = marr_seq,
"Residence" = left_seq

))
Plotting ssp1
plot(ssp1)

Not run:
Defining the plot for sequence index plots of observations
ssp2 <- ssp(

list(child_seq, marr_seq, left_seq),
type = "I", plots = "obs",
Sorting subjects according to the beginning of the 2nd channel (marr_seq)
sortv = "from.start", sort.channel = 2,
Controlling the size, positions, and names for channel labels
ylab.pos = c(1, 2, 1), cex.lab = 1, ylab = c("Children", "Married", "Residence"),
Plotting without legend
with.legend = FALSE

)
plot(ssp2)

Plotting hidden Markov models

Loading data
data("hmm_biofam")

Plotting observations and most probable hidden states paths
ssp3 <- ssp(

hmm_biofam,
type = "I", plots = "both",

84 ssplot

Sorting according to multidimensional scaling of hidden states paths
sortv = "mds.hidden",
Controlling title
title = "Biofam", cex.title = 1.5,
Labels for x axis and tick marks
xtlab = 15:30, xlab = "Age"

)
plot(ssp3)

Computing the most probable paths of hidden states
hid <- hidden_paths(hmm_biofam)
Giving names for hidden states
library(TraMineR)
alphabet(hid) <- paste("Hidden state", 1:5)

Plotting observations and hidden state paths
ssp4 <- ssp(

hmm_biofam,
type = "I", plots = "hidden.paths",
Sequence object of most probable paths
hidden.paths = hid,
Sorting according to the end of hidden state paths
sortv = "from.end", sort.channel = 0,
Contolling legend position, type, and proportion
with.legend = "bottom.combined", legend.prop = 0.15,
Plotting without title and y label
title = FALSE, ylab = FALSE

)
plot(ssp4)

End(Not run)

ssplot Stacked Plots of Multichannel Sequences and/or Most Probable Paths
from Hidden Markov Models

Description

Function ssplot plots stacked sequence plots of sequence object created with the seqdef function
or observations and/or most probable paths of hmm objects.

Usage

ssplot(
x,
hidden.paths = NULL,
plots = "obs",
type = "d",
tlim = 0,

ssplot 85

sortv = NULL,
sort.channel = 1,
dist.method = "OM",
with.missing = FALSE,
missing.color = NULL,
title = NA,
title.n = TRUE,
cex.title = 1,
title.pos = 1,
with.legend = "auto",
ncol.legend = "auto",
with.missing.legend = "auto",
legend.prop = 0.3,
cex.legend = 1,
hidden.states.colors = "auto",
hidden.states.labels = "auto",
xaxis = TRUE,
xlab = NA,
xtlab = NULL,
xlab.pos = 1,
ylab = "auto",
hidden.states.title = "Hidden states",
yaxis = FALSE,
ylab.pos = "auto",
cex.lab = 1,
cex.axis = 1,
respect_void = TRUE,
...

)

Arguments

x Either a hidden Markov model object of class hmm or a state sequence object
of class stslist (created with the seqdef) function) or a list of state sequence
objects.

hidden.paths Output from hidden_paths function. Optional, if x is a hmm object or if type =
"obs".

plots What to plot. One of "obs" for observations (the default), "hidden.paths" for
most probable paths of hidden states, or "both" for observations and hidden
paths together.

type The type of the plot. Available types are "I" for sequence index plots and "d"
for state distribution plots (the default). See seqplot for details.

tlim Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted).
For example, tlim = 1:10 plots the first ten subjects in data.

sortv A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs",
or "mds.hidden") for type = "I". The value "mds.hidden" is only available
when hidden paths are available. Options "mds.obs" and "mds.hidden" au-
tomatically arrange the sequences according to the scores of multidimensional

86 ssplot

scaling (using cmdscale) for the observed data or hidden states paths. MDS
scores are computed from distances/dissimilarities using a metric defined in ar-
gument dist.method. See plot.stslist for more details on "from.start"
and "from.end".

sort.channel The number of the channel according to which the "from.start" or "from.end"
sorting is done. Sorting according to hidden states is called with value 0. The
default value is 1 (the first channel).

dist.method The metric to be used for computing the distances of the sequences if multi-
dimensional scaling is used for sorting. One of "OM" (optimal matching, the
default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest
common suffix), "LCS" (longest common subsequence), "HAM" (Hamming
distance), and "DHD" (dynamic Hamming distance). Transition rates are used
for defining substitution costs if needed. See seqdef for more information on
the metrics.

with.missing Controls whether missing states are included in state distribution plots (type =
"d"). The default is FALSE.

missing.color Alternative color for representing missing values in the sequences. By default,
this color is taken from the missing.color attribute of the sequence object.

title Main title for the graphic. The default is NA: if title.n = TRUE, only the number
of subjects is plotted. FALSE prints no title, even when title.n = TRUE.

title.n Controls whether the number of subjects (in the first channel) is printed in the
title of the plot. The default is TRUE: n is plotted if title is anything but FALSE.

cex.title Expansion factor for setting the size of the font for the title. The default value is
1. Values lesser than 1 will reduce the size of the font, values greater than 1 will
increase the size.

title.pos Controls the position of the main title of the plot. The default value is 1. Values
greater than 1 will place the title higher.

with.legend Defines if and where the legend for the states is plotted. The default value
"auto" (equivalent to TRUE and "right") creates separate legends for each
requested plot and positiones them on the right-hand side of the plot. Other
possible values are "bottom", "right.combined", and "bottom.combined",
of which the last two create a combined legend in the selected position. FALSE
prints no legend.

ncol.legend (A vector of) the number of columns for the legend(s). The default "auto"
determines number of columns depending on the position of the legend.

with.missing.legend

If set to "auto" (the default), a legend for the missing state is added automati-
cally if one or more of the sequences in the data/channel contains missing states
and type = "I". If type = "d" missing states are omitted from the legends un-
less with.missing = TRUE. With the value TRUE a legend for the missing state
is added in any case; equivalently FALSE omits the legend for the missing state.

legend.prop Sets the proportion of the graphic area used for plotting the legend when with.legend
is not FALSE. The default value is 0.3. Takes values from 0 to 1.

cex.legend Expansion factor for setting the size of the font for the labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

ssplot 87

hidden.states.colors

A vector of colors assigned to hidden states. The default value "auto" uses the
colors assigned to the stslist object (created with seqdef) if hidden.paths
is given; otherwise colors from colorpalette are automatically used.

hidden.states.labels

Labels for the hidden states. The default value "auto" uses the names provided
in x$state_names if x is an hmm object; otherwise the number of the hidden
state.

xaxis Controls whether an x-axis is plotted below the plot at the bottom. The default
value is TRUE.

xlab An optional label for the x-axis. If set to NA, no label is drawn.

xtlab Optional labels for the x-axis tick labels. If unspecified, the column names of
the seqdata sequence object are used (see seqdef).

xlab.pos Controls the position of the x-axis label. The default value is 1. Values greater
than 1 will place the label further away from the plot.

ylab Labels for the channels shown as labels for y-axes. A vector of names for each
channel (observations). The default value "auto" uses the names provided in
x$channel_names if x is an hmm object; otherwise the names of the list in x if
given, or the number of the channel if names are not given. FALSE prints no
labels.

hidden.states.title

Optional label for the hidden state plot (in the y-axis). The default is "Hidden
states".

yaxis Controls whether or not to plot the y-axis. The default is FALSE.

ylab.pos Controls the position of the y axis labels (labels for channels and/or hidden
states). Either "auto" or a numerical vector indicating how far away from the
plots the titles are positioned. The default value "auto" positions all titles on
line 1. Shorter vectors are recycled.

cex.lab Expansion factor for setting the size of the font for the axis labels. The default
value is 1. Values lesser than 1 will reduce the size of the font, values greater
than 1 will increase the size.

cex.axis Expansion factor for setting the size of the font for the x-axis tick labels. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

respect_void If TRUE (default), states at the time points corresponding to TraMineR’s void in
the observed sequences are set to void in the hidden state sequences as well.

... Other arguments to be passed on to seqplot.

See Also

ssp for creating ssp objects and plot.ssp and gridplot for plotting these; build_hmm and fit_model
for building and fitting hidden Markov models; hidden_paths for computing the most probable
paths of hidden states; and biofam3c hmm_biofam for information on the data and model used in
the example.

88 ssplot

Examples

data("biofam3c")

Creating sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

Plotting state distribution plots of observations
ssplot(list(

"Children" = child_seq, "Marriage" = marr_seq,
"Residence" = left_seq

))

Not run:
Plotting sequence index plots of observations
ssplot(

list(child_seq, marr_seq, left_seq),
type = "I",
Sorting subjects according to the beginning of the 2nd channel (marr_seq)
sortv = "from.start", sort.channel = 2,
Controlling the size, positions, and names for channel labels
ylab.pos = c(1, 2, 1), cex.lab = 1, ylab = c("Children", "Married", "Residence"),
Plotting without legend
with.legend = FALSE

)

Plotting hidden Markov models

Loading a ready-made HMM for the biofam data
data("hmm_biofam")

Plotting observations and hidden states paths
ssplot(

hmm_biofam,
type = "I", plots = "both",
Sorting according to multidimensional scaling of hidden states paths
sortv = "mds.hidden",
ylab = c("Children", "Married", "Left home"),
Controlling title
title = "Biofam", cex.title = 1.5,
Labels for x axis and tick marks
xtlab = 15:30, xlab = "Age"

)

Computing the most probable paths of hidden states

state_names 89

hidden.paths <- hidden_paths(hmm_biofam)
hidden.paths_seq <- seqdef(hidden.paths, labels = paste("Hidden state", 1:5))

Plotting observations and hidden state paths
ssplot(

hmm_biofam,
type = "I", plots = "hidden.paths",
Sequence object of most probable paths
hidden.paths = hidden.paths_seq,
Sorting according to the end of hidden state paths
sortv = "from.end", sort.channel = 0,
Contolling legend position, type, and proportion
with.legend = "bottom", legend.prop = 0.15,
Plotting without title and y label
title = FALSE, ylab = FALSE

)

End(Not run)

state_names Get state names from hmm or mhmm object

Description

Get state names from hmm or mhmm object

Usage

state_names(object)

Arguments

object An object of class ‘hmm‘ or ‘mhmm‘.

Value

A character vector containing the state names, or a list of such vectors in ‘mhmm‘ case.

state_names<- Set state names for hmm or mhmm object

Description

Set state names for hmm or mhmm object

Usage

state_names(object) <- value

90 summary.mhmm

Arguments

object An object of class ‘hmm‘ or ‘mhmm‘.

value A character vector containing the new state names, or a list of such vectors in
‘mhmm‘ case.

Value

The modified object with updated state names.

summary.mhmm Summary method for mixture hidden Markov models

Description

Function summary.mhmm gives a summary of a mixture hidden Markov model.

Usage

S3 method for class 'mhmm'
summary(
object,
parameters = FALSE,
conditional_se = TRUE,
log_space = FALSE,
...

)

Arguments

object Mixture hidden Markov model of class mhmm.

parameters Whether or not to return transition, emission, and initial probabilities. FALSE by
default.

conditional_se Return conditional standard errors of coefficients. See vcov.mhmm for details.
TRUE by default.

log_space Make computations using log-space instead of scaling for greater numerical sta-
bility at cost of decreased computational performance. Default is FALSE.

... Further arguments to vcov.mhmm.

Details

The summary.mhmm function computes features from a mixture hidden Markov model and stores
them as a list. A print method prints summaries of these: log-likelihood and BIC, coefficients and
standard errors of covariates, means of prior cluster probabilities, and information on most probable
clusters.

trim_model 91

Value

transition_probs Transition probabilities. Only returned if parameters = TRUE.
emission_probs Emission probabilities. Only returned if parameters = TRUE.
initial_probs Initial state probabilities. Only returned if parameters = TRUE.
logLik Log-likelihood.
BIC Bayesian information criterion.
most_probable_cluster The most probable cluster according to posterior probabilities.
coefficients Coefficients of covariates.
vcov Variance-covariance matrix of coefficients.
prior_cluster_probabilities Prior cluster probabilities (mixing proportions) given the covariates.
posterior_cluster_probabilities Posterior cluster membership probabilities.
classification_table Cluster probabilities (columns) by the most probable cluster (rows).

See Also

build_mhmm and fit_model for building and fitting mixture hidden Markov models; and mhmm_biofam
for information on the model used in examples.

Examples

Loading mixture hidden Markov model (mhmm object)
of the biofam data
data("mhmm_biofam")

Model summary
summary(mhmm_biofam)

trim_model Trim Small Probabilities of Hidden Markov Model

Description

Function trim_model tries to set small insignificant probabilities to zero without decreasing the
likelihood.

Usage

trim_model(
model,
maxit = 0,
return_loglik = FALSE,
zerotol = 1e-08,
verbose = TRUE,
...

)

92 vcov.mhmm

Arguments

model Model of class hmm or mhmm for which trimming is performed.

maxit Number of iterations. After zeroing small values, the model is refitted, and this
is repeated until there is nothing to trim or maxit iterations are done.

return_loglik Return the log-likelihood of the trimmed model together with the model object.
The default is FALSE.

zerotol Values smaller than this are trimmed to zero.

verbose Print results of trimming. The default is TRUE.

... Further parameters passed on to fit_model.

See Also

build_hmm and fit_model for building and fitting hidden Markov models; and hmm_biofam for
information on the model used in the example.

Examples

data("hmm_biofam")

Testing if changing parameter values smaller than 1e-03 to zero
leads to improved log-likelihood.
hmm_trim <- trim_model(hmm_biofam, zerotol = 1e-03, maxit = 10)

vcov.mhmm Variance-Covariance Matrix for Coefficients of Covariates of Mixture
Hidden Markov Model

Description

Returns the asymptotic covariances matrix of maximum likelihood estimates of the coefficients
corresponding to the explanatory variables of the model.

Usage

S3 method for class 'mhmm'
vcov(object, conditional = TRUE, threads = 1, log_space = FALSE, ...)

Arguments

object Object of class mhmm.

conditional If TRUE (default), the standard errors are computed conditional on other model
parameters. See details.

threads Number of threads to use in parallel computing. Default is 1.

log_space Make computations using log-space instead of scaling for greater numerical sta-
bility at cost of decreased computational performance. Default is FALSE.

... Additional arguments to function jacobian of numDeriv package.

vcov.mhmm 93

Details

The conditional standard errors are computed using analytical formulas by assuming that the coeffi-
cient estimates are not correlated with other model parameter estimates (or that the other parameters
are assumed to be fixed). This often underestimates the true standard errors, but is substantially
faster approach for preliminary analysis. The non-conditional standard errors are based on the nu-
merical approximation of the full Hessian of the coefficients and the model parameters correspond-
ing to nonzero probabilities. Computing the non-conditional standard errors can be slow for large
models as the Jacobian of analytical gradients is computed using finite difference approximation.

Value

Matrix containing the variance-covariance matrix of coefficients.

Index

∗ datasets
biofam3c, 3
colorpalette, 23
hmm_biofam, 41
hmm_mvad, 43
mhmm_biofam, 49
mhmm_mvad, 52

alphabet, 71
alphabet (seqdef), 71

biofam, 3, 4, 41, 43, 49, 52
biofam3c, 3, 43, 52, 83, 87
build_hmm, 5, 28, 43–45, 47, 59, 61, 70, 76,

77, 83, 87, 92
build_lcm, 9, 28, 64, 77
build_mhmm, 12, 28, 46, 52, 54, 58, 64, 67, 71,

77, 78, 91
build_mm, 18, 28, 59, 77
build_mmm, 20, 28, 64, 77

cluster_names, 22
cluster_names<-, 23
cmdscale, 56, 81, 86
colorpalette, 23, 57, 58, 69, 82, 87

estimate_coef, 24

fit_hmm (seqHMM-deprecated), 72
fit_mhmm (seqHMM-deprecated), 72
fit_model, 6, 10, 14, 21, 24, 43–47, 52, 54,

58, 61, 67, 70, 71, 76, 78, 83, 87, 91,
92

formula, 9, 13, 20, 78
forward_backward, 36

gridplot, 37, 68, 79, 83, 87

hidden_paths, 40, 55, 58, 80, 83, 85, 87
hmm_biofam, 41, 41, 47, 61, 83, 87, 92
hmm_mvad, 43, 61

igraph.plotting, 60, 65

layout_, 59, 65
logLik.hmm, 44
logLik.mhmm, 45

mc_to_sc, 46, 48, 59, 61, 64
mc_to_sc_data, 47
menu, 55, 65
mhmm_biofam, 49, 67, 71, 91
mhmm_mvad, 52, 67
mssplot, 28, 41, 54
mvad, 43, 44, 52, 54

nloptr, 25, 26, 73, 74

par, 59, 65
plot.hmm, 6, 19, 28, 58
plot.igraph, 61, 66, 67
plot.mhmm, 10, 14, 21, 28, 58, 63
plot.ssp, 38, 67, 79, 83, 87
plot.stslist, 56, 81, 86
plot_colors, 23, 68
posterior_probs, 69
print.hmm, 70
print.mhmm (print.hmm), 70
print.summary.mhmm (print.hmm), 70

separate_mhmm, 10, 14, 21, 28, 71
seqdef, 5, 9, 13, 18, 20, 41, 47, 48, 56, 57, 71,

71, 76, 78, 80–82, 84–87
seqHMM, 72
seqHMM-deprecated, 72
seqIplot, 41
seqplot, 55, 57, 60, 66, 80, 82, 85, 87
seqstatf, 71
seqstatf (seqdef), 71
simulate_emission_probs

(simulate_initial_probs), 76
simulate_hmm, 75, 78
simulate_initial_probs, 76

94

INDEX 95

simulate_mhmm, 76, 77
simulate_transition_probs

(simulate_initial_probs), 76
ssp, 38, 67, 68, 79, 87
ssplot, 28, 41, 48, 68, 76, 78, 84
state_names, 89
state_names<-, 89
summary.mhmm, 10, 14, 21, 28, 90

trim_hmm (seqHMM-deprecated), 72
trim_model, 91

vcov.mhmm, 90, 92

	biofam3c
	build_hmm
	build_lcm
	build_mhmm
	build_mm
	build_mmm
	cluster_names
	cluster_names<-
	colorpalette
	estimate_coef
	fit_model
	forward_backward
	gridplot
	hidden_paths
	hmm_biofam
	hmm_mvad
	logLik.hmm
	logLik.mhmm
	mc_to_sc
	mc_to_sc_data
	mhmm_biofam
	mhmm_mvad
	mssplot
	plot.hmm
	plot.mhmm
	plot.ssp
	plot_colors
	posterior_probs
	print.hmm
	separate_mhmm
	seqdef
	seqHMM
	seqHMM-deprecated
	simulate_hmm
	simulate_initial_probs
	simulate_mhmm
	ssp
	ssplot
	state_names
	state_names<-
	summary.mhmm
	trim_model
	vcov.mhmm
	Index

