Package: walker 1.0.10

walker: Bayesian Generalized Linear Models with Time-Varying Coefficients

Efficient Bayesian generalized linear models with time-varying coefficients as in Helske (2022, <doi:10.1016/j.softx.2022.101016>). Gaussian, Poisson, and binomial observations are supported. The Markov chain Monte Carlo (MCMC) computations are done using Hamiltonian Monte Carlo provided by Stan, using a state space representation of the model in order to marginalise over the coefficients for efficient sampling. For non-Gaussian models, the package uses the importance sampling type estimators based on approximate marginal MCMC as in Vihola, Helske, Franks (2020, <doi:10.1111/sjos.12492>).

Authors:Jouni Helske [aut, cre]

walker_1.0.10.tar.gz
walker_1.0.10.zip(r-4.5)walker_1.0.10.zip(r-4.4)walker_1.0.10.zip(r-4.3)
walker_1.0.10.tgz(r-4.5-x86_64)walker_1.0.10.tgz(r-4.5-arm64)walker_1.0.10.tgz(r-4.4-x86_64)walker_1.0.10.tgz(r-4.4-arm64)walker_1.0.10.tgz(r-4.3-x86_64)walker_1.0.10.tgz(r-4.3-arm64)
walker_1.0.10.tar.gz(r-4.5-noble)walker_1.0.10.tar.gz(r-4.4-noble)
walker.pdf |walker.html
walker/json (API)

# Install 'walker' in R:
install.packages('walker', repos = c('https://helske.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/helske/walker/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

bayesiangeneralized-linear-modelsmcmcstantime-seriesopenblascpp

6.42 score 44 stars 15 scripts 383 downloads 4 mentions 10 exports 96 dependencies

Last updated 5 months agofrom:1d02788842. Checks:4 OK, 7 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 26 2025
R-4.5-win-x86_64NOTEJan 26 2025
R-4.5-mac-x86_64OKJan 26 2025
R-4.5-mac-aarch64OKJan 26 2025
R-4.5-linux-x86_64OKJan 26 2025
R-4.4-win-x86_64NOTEJan 26 2025
R-4.4-mac-x86_64NOTEJan 26 2025
R-4.4-mac-aarch64NOTEDec 27 2024
R-4.3-win-x86_64NOTEJan 26 2025
R-4.3-mac-x86_64NOTEJan 26 2025
R-4.3-mac-aarch64NOTEDec 27 2024

Exports:lfoplot_coefsplot_fitplot_predictpredict_counterfactualrw1rw2walkerwalker_glmwalker_rw1

Dependencies:abindbackportsbase64encbayesplotBHbslibcachemcallrcheckmatecliclustercodacolorspacedata.tabledescdigestdistributionaldplyrevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsggplot2ggridgesgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsinlineisobandjquerylibjsonliteKFASknitrlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetnumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelreshape2rlangrmarkdownrpartrstanrstantoolsrstudioapisassscalesStanHeadersstringistringrtensorAtibbletidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml

Efficient Bayesian generalized linear models with time-varying coefficients

Rendered fromwalker.Rmdusingknitr::rmarkdownon Jan 26 2025.

Last update: 2024-08-29
Started: 2017-06-08