Package: tsPI 1.0.4

tsPI: Improved Prediction Intervals for ARIMA Processes and Structural Time Series

Prediction intervals for ARIMA and structural time series models using importance sampling approach with uninformative priors for model parameters, leading to more accurate coverage probabilities in frequentist sense. Instead of sampling the future observations and hidden states of the state space representation of the model, only model parameters are sampled, and the method is based solving the equations corresponding to the conditional coverage probability of the prediction intervals. This makes method relatively fast compared to for example MCMC methods, and standard errors of prediction limits can also be computed straightforwardly.

Authors:Jouni Helske

tsPI_1.0.4.tar.gz
tsPI_1.0.4.zip(r-4.5)tsPI_1.0.4.zip(r-4.4)tsPI_1.0.4.zip(r-4.3)
tsPI_1.0.4.tgz(r-4.4-x86_64)tsPI_1.0.4.tgz(r-4.4-arm64)tsPI_1.0.4.tgz(r-4.3-x86_64)tsPI_1.0.4.tgz(r-4.3-arm64)
tsPI_1.0.4.tar.gz(r-4.5-noble)tsPI_1.0.4.tar.gz(r-4.4-noble)
tsPI_1.0.4.tgz(r-4.4-emscripten)tsPI_1.0.4.tgz(r-4.3-emscripten)
tsPI.pdf |tsPI.html
tsPI/json (API)

# Install 'tsPI' in R:
install.packages('tsPI', repos = c('https://helske.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/helske/tspi/issues

Uses libs:
  • openblas– Optimized BLAS

On CRAN:

3.60 score 8 stars 6 scripts 209 downloads 11 exports 1 dependencies

Last updated 1 years agofrom:f2c774850a. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-win-x86_64OKNov 14 2024
R-4.5-linux-x86_64OKNov 14 2024
R-4.4-win-x86_64OKNov 14 2024
R-4.4-mac-x86_64OKNov 14 2024
R-4.4-mac-aarch64OKNov 14 2024
R-4.3-win-x86_64OKNov 14 2024
R-4.3-mac-x86_64OKNov 14 2024
R-4.3-mac-aarch64OKNov 14 2024

Exports:acv_armaapprox_joint_jeffreysapprox_marginal_jeffreysarima_piavg_coverage_arimaavg_coverage_structdacv_armaexact_joint_jeffreysexact_marginal_jeffreysinformation_armastruct_pi

Dependencies:KFAS